相关习题
 0  237833  237841  237847  237851  237857  237859  237863  237869  237871  237877  237883  237887  237889  237893  237899  237901  237907  237911  237913  237917  237919  237923  237925  237927  237928  237929  237931  237932  237933  237935  237937  237941  237943  237947  237949  237953  237959  237961  237967  237971  237973  237977  237983  237989  237991  237997  238001  238003  238009  238013  238019  238027  266669 

科目: 来源: 题型:填空题

10.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n=23或24.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知椭圆${C_1}:\frac{x^2}{m^2}+{y^2}=1({m>1})$与双曲线C2:$\frac{{x}^{2}}{{n}^{2}}$-y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则(  )
A.m>n且e1e2>1B.m>n且e1e2<1C.m<n且e1e2>1D.m<n且e1e2<1

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知θ为锐角,且cos(θ+$\frac{π}{12}$)=$\frac{\sqrt{3}}{3}$,则cos($\frac{5π}{12}$-θ)=(  )
A.$\frac{\sqrt{6}+\sqrt{2}}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{6}}{3}$D.-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知函数f(x)=2|x|,记a=f(log0.53),b=log25,c=f(0),则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\sqrt{3}$,且过点($\sqrt{2}$,$\sqrt{2}$)
(1)求双曲线C的方程;
(2)已知直线x-y+m=0与双曲线c交于不同的两点A、B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知a∈{-2,0,1,3},b∈{1,2},则曲线ax2+by2=1为椭圆的概率是(  )
A.$\frac{3}{7}$B.$\frac{4}{7}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率是$\frac{{\sqrt{2}}}{2}$,上顶点B是抛物线x2=4y的焦点.
(1)求椭圆M的标准方程;
(2)若P、Q是椭圆M上的两个动点,且OP⊥OQ(O是坐标原点),试问:点到直线的距离是否为定值?若是,试求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中都$\frac{2}{3}$是青年人.
(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成2×2列联表:
青年人中年人合计
经常使用微信8040120
不经常使用微信55560
合计13545180
(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人,均是青年人的概率.
附:
p(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系.已知曲线C的极坐标方程为:ρ=4cosθ,直线l的参数方程为:$\left\{{\begin{array}{l}{x=3+\frac{{\sqrt{3}}}{2}t}\\{y=\frac{1}{2}t}\end{array}}\right.$(t为参数),直线l与C交于P1,P2两点.
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)已知Q(3,0),求||P1Q|-|P2Q||的值.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知实数x,y满足约束条件$\left\{{\begin{array}{l}{x+y+1≥0}\\{{x^2}+{y^2}≤4}\\{xy≥0}\end{array}}\right.$,则z=2x+y的取值范围是(  )
A.$[-2,2\sqrt{5}]$B.[-2,0]C.$[-2\sqrt{5},2]$D.$[\frac{{2\sqrt{5}}}{5},1]$

查看答案和解析>>

同步练习册答案