相关习题
 0  237891  237899  237905  237909  237915  237917  237921  237927  237929  237935  237941  237945  237947  237951  237957  237959  237965  237969  237971  237975  237977  237981  237983  237985  237986  237987  237989  237990  237991  237993  237995  237999  238001  238005  238007  238011  238017  238019  238025  238029  238031  238035  238041  238047  238049  238055  238059  238061  238067  238071  238077  238085  266669 

科目: 来源: 题型:选择题

2.已知集合A={x|log${\;}_{\frac{1}{2}}$(x+1)≥-2},B={x|$\frac{x+2}{1-x}$≥2},则 A∩B=(  )
A.(-1,1)B.[0,1)C.[0,3]D.

查看答案和解析>>

科目: 来源: 题型:选择题

1.过点P(1,0)与抛物线y=x2有且只有一个公共点的直线共有(  )
A.4条B.3条C.2条D.1条

查看答案和解析>>

科目: 来源: 题型:选择题

20.函数y=2x+1的反函数是(  )
A.y=logx2+1,x>0且x≠1B.y=log2x+1,x>0
C.y=log2x-1,x>0D.y=log2(x-1),x>1

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知数列{an}中,a1=2,nan+1=2(n+1)an,则a5=(  )
A.320B.160C.80D.40

查看答案和解析>>

科目: 来源: 题型:选择题

18.若圆C:x2+y2=4上的点到直线l:y=x+a的最小距离为2,则a=(  )
A.$2\sqrt{2}$B.$4\sqrt{2}$C.$±2\sqrt{2}$D.$±4\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知等差数列{an}的首项a1=1,公差d>0,且第二项,第五项,第十四项分别是等比数列{bn}的第二项,第三项,第四项.
(1)求数列{an}与{bn}的通项公式.
(2)设数列{cn}对任意正整数n,均有$\frac{c_1}{b_1}+\frac{c_2}{b_2}+\frac{c_3}{b_3}+…+\frac{c_n}{b_n}={a_{n+1}}$,求c1+c2+c3+…+c2004的值.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知双曲线的焦点分别为(0,-2)、(0,2),且经过点P(-3,2),则双曲线的标准方程是(  )
A.$\frac{x^2}{3}-{y^2}$=1B.$\frac{y^2}{3}-{x^2}$=1C.y2-$\frac{x^2}{3}$=1D.$\frac{x^2}{2}-\frac{y^2}{2}$=1

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4(m∈R),则直线l过的定点及直线与圆相交得的最短弦长分别为(  )
A.(3,1),$4\sqrt{5}$B.(2,1),$4\sqrt{5}$C.(-3,1),$4\sqrt{3}$D.(2,-1),3$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=ax2-(a+2)x+lnx
(1)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;
(2)若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元)12345
销售收益y(单位:万元)2327
表中的数据显示,与y之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算y关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为$\frac{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案