相关习题
 0  238000  238008  238014  238018  238024  238026  238030  238036  238038  238044  238050  238054  238056  238060  238066  238068  238074  238078  238080  238084  238086  238090  238092  238094  238095  238096  238098  238099  238100  238102  238104  238108  238110  238114  238116  238120  238126  238128  238134  238138  238140  238144  238150  238156  238158  238164  238168  238170  238176  238180  238186  238194  266669 

科目: 来源: 题型:选择题

2.已知函数f(x)=|log2|1-x||,若函数g(x)=f2(x)+af(x)+2b有6个不同的零点,则这6个零点之和为(  )
A.7B.6C.$\frac{11}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

1.过圆x2+y2=16上一点P作圆O:x2+y2=m2(m>0)的两条切线,切点分别为A、B,若$∠AOB=\frac{2}{3}π$,则实数m=(  )
A.2B.3C.4D.9

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知奇函数f(x)在[0,+∞)上是增函数,若f(lnx)<0,则(  )
A.$\frac{1}{e}$<x<1或x>1B.1<x<eC.0<x<e或x>eD.0<x<1

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点(3,2),当a2+b2取得最小值时,椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图①,这个美妙的螺旋叫做特奥多鲁斯螺旋,是由公元5世纪古希腊哲学家特奥多鲁斯给出的,螺旋由一系列直角三角形组成(图②),第一个三角形是边长为1的等腰直角三角形,以后每个直角三角形以上一个三角形的斜边为直角边,另一个直角边为1.将这些直角三角形在公共顶点处的角依次记为α1,α2,α3,…,则与α1234最接近的角是(  )
参考值:tan55°≈1.428,tan60°≈1.732,tan65°≈2.145,$\sqrt{2}≈1.414$
A.120°B.130°C.135°D.140°

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}f(x+1),x<4\\{2^x},x≥4\end{array}\right.$,则f(2+log23)=(  )
A.8B.12C.16D.24

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知a,b,c为正实数,且a+b+c=3
(Ⅰ)解关于c的不等式|2c-4|≤a+b;
(Ⅱ)证明:$\frac{c^2}{a}+\frac{a^2}{b}+\frac{b^2}{c}≥3$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知曲线C的参数方程为$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$ρsin(θ+\frac{π}{6})=4$.
(Ⅰ)写出曲线C的极坐标方程和直线l的直角坐标方程;
(Ⅱ)若射线$θ=\frac{π}{3}$与曲线C交于O,A两点,与直线l交于B点,射线$θ=\frac{11π}{6}$与曲线C交于O,P两点,求△PAB的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知两点$A(-\sqrt{2},0),B(\sqrt{2},0)$,动点P在y轴上的投影是Q,且$2\overrightarrow{PA}•\overrightarrow{PB}=|\overrightarrow{PQ}{|^2}$.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过F(1,0)作互相垂直的两条直线交轨迹C于点G,H,M,N,且E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图所示三棱柱ABC-A1B1C1中,AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,AC⊥CD.
(Ⅰ)若AA1=AC,求证:AC1⊥平面A1B1CD;
(Ⅱ)若A1D与BB1所成角的余弦值为$\frac{\sqrt{21}}{7}$,求二面角C-A1D-C1的余弦值.

查看答案和解析>>

同步练习册答案