相关习题
 0  238011  238019  238025  238029  238035  238037  238041  238047  238049  238055  238061  238065  238067  238071  238077  238079  238085  238089  238091  238095  238097  238101  238103  238105  238106  238107  238109  238110  238111  238113  238115  238119  238121  238125  238127  238131  238137  238139  238145  238149  238151  238155  238161  238167  238169  238175  238179  238181  238187  238191  238197  238205  266669 

科目: 来源: 题型:解答题

19.数列{an}的前n项和为Sn,已知${a_1}=\frac{1}{2},{S_n}={n^2}{a_n}-n({n-1}),n=1,2,…$
(1)写出Sn与Sn-1的递推关系式(n≥2),并求出S2,S3的值;
(2)求Sn关于n的表达式.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知随机变量X的分布列为$P(X=k)=\frac{a}{2^k},k=1,2,…10$,则P(2<X≤4)=(  )
A.$\frac{16}{341}$B.$\frac{32}{341}$C.$\frac{64}{341}$D.$\frac{128}{341}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.
(1)根据茎叶图中的数据完成2×2列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
购买意愿强购买意愿弱合计
20-40岁
大于40岁
合计
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,记抽到的2人中年龄大于40岁的市民人数为X,求X的分布列和数学期望.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=$\frac{{e}^{x}}{x}$-alnx-$\frac{a}{x}$(a∈R).
(1)当a=1时,求f(x)在(1,f(1))处的切线方程;
(2)当x>1时,f(x)>e-a,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

15.两曲线$y=\sqrt{x}$,y=x2在x∈[0,1]内围成的图形面积是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知函数f(n)=k,(n∈N*),k是$\sqrt{2}$小数点后第n位数字,$\sqrt{2}$=1.414213562…,则$\underbrace{f\{f…f[{f(8)}]\}}_{2016个f}$=(  )
A.1B.2C.4D.6

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图所示,在直角梯形ABEF中,将DCEF沿CD折起使∠FDA=60°,得到一个空间几何体.
(1)求证:AF⊥平面ABCD;
(2)求三棱锥E-BCD的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知$sin(\frac{π}{2}+α)=\frac{1}{3}$,则cos(π-α)=-$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知集合U={x|1<x<5,x∈N*},集合A={2,3},则∁UA={4}.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知各项均为正数的数列{an},其前n项和为Sn.点(an,Sn)在函数f(x)=2x-1图象上.数列{bn}满足:bn=log2an+1
(1)求数列{an}、{bn}的通项公式;
(2)若cn=$\frac{{b}_{n}}{{a}_{n}}$,数列{cn}的前n项和Tn,求证:Tn+$\frac{n}{{2}^{n-1}}$≥2恒成立.

查看答案和解析>>

同步练习册答案