相关习题
 0  238015  238023  238029  238033  238039  238041  238045  238051  238053  238059  238065  238069  238071  238075  238081  238083  238089  238093  238095  238099  238101  238105  238107  238109  238110  238111  238113  238114  238115  238117  238119  238123  238125  238129  238131  238135  238141  238143  238149  238153  238155  238159  238165  238171  238173  238179  238183  238185  238191  238195  238201  238209  266669 

科目: 来源: 题型:填空题

19.在长为5的线段AB上任取一点P,以AP为边长作等边三角形,则此三角形的面积介于$\sqrt{3}$和4$\sqrt{3}$的概率为$\frac{2}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P(x0,$\frac{5}{2}$)为双曲线上一点,若△PF1F2的内切圆半径为1,且圆心G到原点O的距离为$\sqrt{5}$,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{3}$-$\frac{8{y}^{2}}{25}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{6}$-$\frac{2{y}^{2}}{25}$=1D.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{50}$=1

查看答案和解析>>

科目: 来源: 题型:选择题

17.在(1+$\frac{x}{2}$)8二项展开式中x3的系数为m,则${∫}_{0}^{1}$(x2+mx)dx=(  )
A.$\frac{17}{6}$B.$\frac{20}{6}$C.$\frac{23}{6}$D.$\frac{26}{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.设实数x,y满足不等式组$\left\{\begin{array}{l}{y≥2x}\\{y-x≤1}\\{y≥1}\end{array}\right.$,则目标函数z=2x+y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$=1|,$\overrightarrow{a}$•$\overrightarrow{b}$=1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$,则|$\overrightarrow{b}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知抛物线C:y2=2px(p>0)与直线y=x+1相切.
(1)求抛物线C的方程;
(2)设A(x1,y1),B(x2,y2)是曲线C上两个动点,其中x1≠x2,且x1+x2=4,线段AB的垂直平分线l与x轴相交于点Q,求△ABQ面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,边长为2的等边三角形ABC中,D为BC的中点,将△ABC沿AD翻折成直二面角B-AD-C,点E,F分别是AB,AC的中点.
(1)求证:BC∥平面DEF;
(2)求多面体D-BCEF的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

12.某公司近年来产品研发费用支出x万元与公司所获得利润y之间有如下统计数据:
 x 2 3 4 5
 y 18 27 32 35
(1)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\overline{b}$x+$\widehat{a}$
(2)试根据(1)中求出的线性回归方程,预测该公司产品研发费用支出为10万元时所获得的利润.
参考公式:用最小二乘法求现象回归方程$\widehat{y}$=$\overline{b}$x+$\widehat{a}$ 
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知△ABC中,$AB=1,BC=\sqrt{3},BD$是AC边上的中线.
(1)求$\frac{sin∠ABD}{sin∠CBD}$; 
(2)若$∠A=\frac{2π}{3}$,求BD的长.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知数列{an}满足an-an+1=an+1an(n∈N*),数列{bn}满足${b_n}=\frac{1}{a_n}$,且b1+b2+…+b10=65,则an=$\frac{1}{n+1}$.

查看答案和解析>>

同步练习册答案