相关习题
 0  238017  238025  238031  238035  238041  238043  238047  238053  238055  238061  238067  238071  238073  238077  238083  238085  238091  238095  238097  238101  238103  238107  238109  238111  238112  238113  238115  238116  238117  238119  238121  238125  238127  238131  238133  238137  238143  238145  238151  238155  238157  238161  238167  238173  238175  238181  238185  238187  238193  238197  238203  238211  266669 

科目: 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面ABCD是直角梯形,∠ABC=90°,AB∥CD,AB=AD=2,CD=1,侧面PAD⊥底面ABCD,且△PAD是以AD为底的等腰三角形
(1)证明:AD⊥PB;
(2)若三棱锥C-PBD的体积等于$\frac{1}{2}$,问:是否存在过点C的平面CMN,分别交PB、AB于点M,N,使得平面CMN∥平面PAD?若存在,求出△CMN的面积;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知集合P={-1,0,1},$Q=\left\{{x\left|{y=\sqrt{x+1}}\right.}\right\}$,则P∩Q=(  )
A.PB.QC.{-1,1}D.{0,1}

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知椭圆$C:\frac{x^2}{2}+{y^2}=1$的左焦点为F,不垂直于x轴且不过F点的直线l与椭圆C相交于A,B两点.
(1)如果直线FA,FB的斜率之和为0,则动直线l是否一定经过一定点?若过一定点,则求出该定点的坐标;若不过定点,请说明理由.
(2)如果FA⊥FB,原点到直线l的距离为d,求d的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

16.设$f(x)=\left\{\begin{array}{l}{e^x},x∈[{0,1}]\\ x+1,x∈[{-1,0})\end{array}\right.$,直线x=-1,x=1,y=0,y=e围成的区域为M,曲线y=f(x)与直线x=1,y=0围成的区域为N,在区域M内任取一点P,则P点在区域N的概率为(  )
A.$\frac{1}{2}-\frac{1}{4e}$B.$\frac{1}{e}$C.$\frac{1}{4}+\frac{1}{4e}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知曲线C1的极坐标方程为ρ($\sqrt{2}$cosθ-sinθ)=a,曲线C2的参数方程为$\left\{\begin{array}{l}x=sinθ+cosθ\\ y=1+sin2θ\end{array}$(θ为参数),且C1与C2有两个不同的交点.
(1)写出曲线C1的直角坐标方程和曲线C2的普通方程;
(2)求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知集合A={x|x2-3x-10≤0},B={x|4<x<6},C={x|x<a}.
(1)求∁U(A∩B);
(2)若A∪B⊆C,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知函数f(x)=ax-k的图象过点(1,3)和(0,2),则函数f(x)的解析式为f(x)=2x+1.

查看答案和解析>>

科目: 来源: 题型:解答题

12.某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{4}$,且各阶段通过与否相互独立.
(1)求该选手在复赛阶段被淘汰的概率;
(2)设该选手在竞赛中回答问题的个数为ξ,求ξ的分布列与均值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.设x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(1)若x1=-1,x2=2,求函数f(x)的解析式;
(2)若|x1|+|x2|=2,求b的最大值;
(3)设函数g(x)=f′(x)-a(x-x1),x∈(x1,x2),当x2=a时,求证:|g(x)≤$\frac{1}{12}$a(3a+2)2

查看答案和解析>>

科目: 来源: 题型:填空题

10.若命题“?x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是(2,+∞) .

查看答案和解析>>

同步练习册答案