相关习题
 0  238054  238062  238068  238072  238078  238080  238084  238090  238092  238098  238104  238108  238110  238114  238120  238122  238128  238132  238134  238138  238140  238144  238146  238148  238149  238150  238152  238153  238154  238156  238158  238162  238164  238168  238170  238174  238180  238182  238188  238192  238194  238198  238204  238210  238212  238218  238222  238224  238230  238234  238240  238248  266669 

科目: 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,$-\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式
(2)如何由函数y=2sinx的图象通过适当的变换得到函数f(x)的图象,写出变换过程.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图所示,平面EAD⊥平面ABCD,△ADE是等边三角形,ABCD是矩形,F是AB的中点,P是O的中点,O是PQ的中点,EC与平面ABCD成30°角.
(1)求证:EG⊥平面ABCD;
(2)求证:HF∥平面EAD;
(3)若AD=4,求三棱锥D-CEF的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,且F2为抛物线${C_2}:{y^2}=2px$的焦点,C2的准线l被C1和圆x2+y2=a2截得的弦长分别为$2\sqrt{2}$和4.
(1)求C1和C2的方程;
(2)直线l1过F1且与C2不相交,直线l2过F2且与l1平行,若l1交C1于A,B,l2交C1交于C,D,且在x轴上方,求四边形AF1F2C的面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.过原点O作圆x2+y2-8x=0的弦OA,延长OA到N,使|OA|=|AN|,求点N的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知集合A={x|(x-1)(3-x)<0},B={x|-3≤x≤3},则A∩B=(  )
A.(-1,2]B.(1,2]C.[-2,1)D.[-3,1)

查看答案和解析>>

科目: 来源: 题型:填空题

9.设抛物线y2=-12x上一点P到y轴的距离是1,则点P到该抛物线焦点的距离是4.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知全集U=R,集合A={x|x2-x-2≥0},B={x|log3x<1,则(∁UA)∩B=(  )
A.[2,3)B.[-1,2)C.(0,1)D.(0,2)

查看答案和解析>>

科目: 来源: 题型:解答题

7.雾霾天气对人体健康有害,应对雾霾污染、改善空气质量是当前的首要任务是控制PM2.5,要从压减燃煤、严格控产、调整产业、强化管理、联防联控、依法治理等方面采取重大举措,聚焦重点领域,严格考核指标.某省环保部门为加强环境执法监管,派遣四个不同的专家组对A,B,C三个城市进行雾霾落实情况抽查.
(1)若每个专家组随机选取一个城市,四个专家组选取的城市可以相同,也可以不同,且每个城市都必须由专家组选取,求A城市恰有两有专家组选取的概率;
(2)在检查的过程中专家组从A城市的居民中随机抽取出400人进行是否户外作业人员与是否患有呼吸道疾病进行了统计,统计结果如下:
 分类 患呼吸道疾病 未患呼吸道疾病 合计
 户外作业人员 40 60 100
 
 非户外作业人员
 60 240 300
 合计 100 300 400
根据上述的统计结果,我们是否有超过99%的把握认为“户外作业”与“患有呼吸道疾病”有关?
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k) 0.50 0.400.25 0.15 0.10  0.05 0.025 0.010 0.005 0.001
 k 0.4550.708 1.323 0.072 2.706 3.8415.024 6.635 7.879 10.828

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在四棱锥S-ABCD中,底面梯形ABCD中,AD∥BC,平面SAB⊥平面ABCD,△SAB是等边三角形,已知$AC=2AB=4,BC=2AD=2CD=2\sqrt{5}$,M是SD上任意一点,$\overrightarrow{SM}=m\overrightarrow{MD}$,且m>0.
(1)求证:平面SAB⊥平面MAC;
(2)试确定m的值,使三棱锥S-ABC体积为三棱锥S-MAC体积的3倍.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知正数数列{an}的前n项和为Sn,满足an2=Sn+Sn-1(n≥2),a1=1.
(1)求数列{an}的通项公式;
(2)设bn=(1-an2-a(1-an),若bn+1>bn对任意n∈N*恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案