相关习题
 0  238057  238065  238071  238075  238081  238083  238087  238093  238095  238101  238107  238111  238113  238117  238123  238125  238131  238135  238137  238141  238143  238147  238149  238151  238152  238153  238155  238156  238157  238159  238161  238165  238167  238171  238173  238177  238183  238185  238191  238195  238197  238201  238207  238213  238215  238221  238225  238227  238233  238237  238243  238251  266669 

科目: 来源: 题型:解答题

4.已知函数f(x)=|x|,g(x)=m-|x-3|.
(1)解关于的不等式g(f(x))+1-m>0;
(2)已知c>0,f(a)<c,f(b)<c,求证:$\frac{f(a+b)}{f({c}^{2}+ab)}$<$\frac{1}{c}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P(3,$\frac{5}{2}$)为双曲线上一点,若△PF1F2的内切圆的半径为1,则双曲线的方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目: 来源: 题型:填空题

2.若P为圆(x-2)2+y2=1上的动点,则点P到直线l:x-y+2=0的最短距离为2$\sqrt{2}$-1.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{ln(-x),x<0}\\{\frac{x}{{e}^{x-1}}.x≥0}\end{array}\right.$,若方程[f(x)]2+mf(x)-m(m+1)=0有四个不等的实数根,则m的取值范围是(  )
A.-1≤m<$\frac{4}{5}$B.m≤-1或m>1C.m=-1或m>1D.m=-1或0<m<1

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{\sqrt{3}}{2}$),椭圆的左、右顶点分别为A1,A2,点P坐标为(4,0),|PA1|,|A1A2|,|PA2|成等差数列.
(1)求椭圆的标准方程;
(2)椭圆内部是否存在一个定点,过此点的直线交椭圆于M,N两点,且$\overrightarrow{PM}$•$\overrightarrow{PN}$=12恒成立,若存在,求出此点,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知tanθ=2,则sinθcosθ=$\frac{2}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.数列{an}中,a1=1,当n≥2时,其前n项和为Sn,满足${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$).
(Ⅰ)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列,并求Sn的表达式;
(Ⅱ)设bn=$\frac{{S}_{n}}{2n+1}$,数列{bn}的前n项和为Tn,不等式Tn≥$\frac{1}{18}$(m2-5m)对所有的n∈N*恒成立,求正整数m的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知焦点在x轴上的椭圆E:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{{b}^{2}}$=1(b>0)
(1)若0<b≤2,求离心率e的取值范围;
(2)椭圆E内含圆C:x2+y2=$\frac{8}{3}$.圆C的切线l与椭圆E交于A,B两点,满足$\overrightarrow{OA}⊥\overrightarrow{OB}$(O为坐标原点).
①求b2的值;
②求△ABC面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

16.某农场所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了2017年2月1日至2月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表:
日期2月1日2月2日2月3日2月4日2月5日
温差x(°C)101113128
发芽数x(颗)2325302616
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的两组数据进行检验.
(Ⅰ)求选取的2组数据恰好是不相邻的2天数据的概率;
(Ⅱ)若选取的是2月1日与2月5日的两组数据,请根据2月2日至2月4日的数据,求出y关于x的线性回归方程
$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;可以预报当温差为20℃时,种子发芽数.
附:回归直线方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$;$\stackrel{∧}{b}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知圆C:x2+(y-4)2=4,直线l过点(-2,0).
(1)当直线l与圆C相切时,求直线l的一般式方程;
(2)当直线l与圆C相交于A、B两点,且|AB|≥2$\sqrt{2}$时,求直线l斜率的取值范围.

查看答案和解析>>

同步练习册答案