相关习题
 0  238061  238069  238075  238079  238085  238087  238091  238097  238099  238105  238111  238115  238117  238121  238127  238129  238135  238139  238141  238145  238147  238151  238153  238155  238156  238157  238159  238160  238161  238163  238165  238169  238171  238175  238177  238181  238187  238189  238195  238199  238201  238205  238211  238217  238219  238225  238229  238231  238237  238241  238247  238255  266669 

科目: 来源: 题型:选择题

4.同时具有以下性质:“①最小正周期是π;②图象关于直线x=$\frac{π}{3}$对称;③在$[-\frac{π}{6},\frac{π}{3}]$上是增函数;④一个对称中心为$(\frac{π}{12},0)$”的一个函数是(  )
A.$y=sin(\frac{x}{2}+\frac{π}{6})$B.$y=sin(2x+\frac{π}{3})$C.$y=sin(2x-\frac{π}{6})$D.$y=sin(2x-\frac{π}{3})$

查看答案和解析>>

科目: 来源: 题型:选择题

3.记sin(-80°)=k,那么tan100°=(  )
A.$\frac{{\sqrt{1-{k^2}}}}{k}$B.$-\frac{{\sqrt{1-{k^2}}}}{k}$C.$\frac{k}{{\sqrt{1-{k^2}}}}$D.$-\frac{k}{{\sqrt{1-{k^2}}}}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知$cos(\frac{π}{6}+x)=\frac{1}{3}$,则$cos(\frac{5π}{6}-x)$的值为(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知等差数列{an}与等差数列{bn}的前n项和分别为Sn和Tn,若$\frac{S_n}{T_n}=\frac{3n-1}{2n+3}$,则$\frac{{{a_{10}}}}{{{b_{10}}}}$=(  )
A.$\frac{3}{2}$B.$\frac{14}{13}$C.$\frac{56}{41}$D.$\frac{29}{23}$

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知函数$y=lg(x-2)+\sqrt{3-x}$,则其定义域为(2,3].

查看答案和解析>>

科目: 来源: 题型:解答题

19.随着经济社会的发展,消费者对食品安全的关注度越来越高,通过随机询问某地区110名居民在购买食品时是否看生产日期与保质期等内容,得到如下的列联表:
年龄与看生产日期与保质期列联表 单位:名
60岁以下60岁以上总计
看生产日期与保质期503080
不看生产日期与保质期102030
总计6050110
(1)从这50名60岁以上居民中按是否看生产日期与保质期采取分层抽样,抽取一个容量为5的样本,问样本中看与不看生产日期与保质期的60岁以上居民各有多少名?
(2)从(1)中的5名居民样本中随机选取两名作深度访谈,求选到看与不看生产日期与保质期的60岁以上居民各1名的概率;
(3)根据以上列联表,问有多大把握认为“年龄与在购买食品时看生产日期与保质期”有关?
附:下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=($\sqrt{2}$cosωx,1),$\overrightarrow{b}$=(2sin(ωx+$\frac{π}{4}$),-1)(其中$\frac{1}{4}$≤ω≤$\frac{3}{2}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,且f(x)图象的一条对称轴为x=$\frac{5π}{8}$.
(1)求f($\frac{3}{4}$π)的值;
(2)若f($\frac{α}{2}-\frac{π}{8}$)=$\frac{{\sqrt{2}}}{3}$,f($\frac{β}{2}-\frac{π}{8}$)=$\frac{{2\sqrt{2}}}{3}$,且$α,β∈({-\frac{π}{2},\frac{π}{2}})$,求cos(α-β)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.某民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.先按照同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(1)求出f(6)的值;
(2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知数列{an}满足:${a_1}=2,{a_{n+1}}={a_n}^2-k{a_n}+k({k∈{N^*}}),{a_1},{a_2},{a_3}$分别是公差不为零的等差数列{bn}的前三项.
(1)求k的值;
(2)求证:对任意的n∈N*,bn,b2n,b4n不可能是等比数列.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|
(1)当a=2时,求满足f(x)≥g(2)的x的值.
(2)当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.

查看答案和解析>>

同步练习册答案