相关习题
 0  238063  238071  238077  238081  238087  238089  238093  238099  238101  238107  238113  238117  238119  238123  238129  238131  238137  238141  238143  238147  238149  238153  238155  238157  238158  238159  238161  238162  238163  238165  238167  238171  238173  238177  238179  238183  238189  238191  238197  238201  238203  238207  238213  238219  238221  238227  238231  238233  238239  238243  238249  238257  266669 

科目: 来源: 题型:选择题

4.若双曲线E:$\frac{x^2}{9}-\frac{y^2}{16}=1$的左右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=7,则|PF2|等于(  )
A.1B.13C.1或13D.15

查看答案和解析>>

科目: 来源: 题型:填空题

3.设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n?γ且(1)或(3),则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.
(1)α∥γ,n?β; (2)m∥γ,n∥β;(3)n∥β,m?γ.可以填入的条件有(1)或(3).

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x≥1}\\{x+c,x<1}\end{array}\right.$,则“c=-1”是“函数在R上单调递增”的充分不必要条件.

查看答案和解析>>

科目: 来源: 题型:选择题

1.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一个焦点为F,虚轴的一个端点为B,线段BF与双曲线的一条渐近线交于点A,若$\overrightarrow{FA}=2\overrightarrow{AB}$,则双曲线的离心率为(  )
A.6B.4C.3D.2

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知$f(α)=\frac{{sin({π+α})cos({2π-α})tan({-α})}}{{tan({-π-α})cos({\frac{3π}{2}+α})}}$.
(1)化简f(α);
(2)当$α=-\frac{31π}{3}$时,求f(α)的值;
(3)若α是第三象限的角,且$sinα=-\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目: 来源: 题型:选择题

19.下面四个推理不是合情推理的是(  )
A.由圆的性质类比推出球的有关性质
B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°
C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分
D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知f(x)=3sin(2x+$\frac{π}{4}$)-1.
(1)f(x)的图象是由y=sin x的图象如何变换而来?
(2)求f(x)的最小正周期、图象的对称轴方程、最大值及其对应的x的值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.(1)计算 $\frac{\sqrt{3}sin(-\frac{20}{3}π)}{tan\frac{11}{3}π}$-cos$\frac{13}{4}$π•tan(-$\frac{37}{4}$π).
(2)已知tan α=$\frac{4}{3}$,求下列各式的值:①$\frac{sin2α+2sinαcosα}{2cos2α-sin2α}$;②sin αcos α.

查看答案和解析>>

科目: 来源: 题型:选择题

16.△ABC的内角A,B,C的对边分别是a,b,c,满足a2+bc≤b2+c2,则角A的范围是(  )
A.$(0,\frac{π}{6}]$B.$(0,\frac{π}{3}]$C.$[\frac{π}{6},π)$D.$[\frac{π}{3},π)$

查看答案和解析>>

科目: 来源: 题型:选择题

15.如果$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面内所有向量的一组基底,那么(  )
A.该平面内存在一向量$\overrightarrow a$不能表示$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$,其中m,n为实数
B.若向量$m\overrightarrow{e_1}+n\overrightarrow{e_2}$与$\overrightarrow a$共线,则存在唯一实数λ使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=λ\overrightarrow a$
C.若实数m,n使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=\overrightarrow 0$,则m=n=0
D.对平面中的某一向量$\overrightarrow a$,存在两对以上的实数m,n使得$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$

查看答案和解析>>

同步练习册答案