相关习题
 0  238144  238152  238158  238162  238168  238170  238174  238180  238182  238188  238194  238198  238200  238204  238210  238212  238218  238222  238224  238228  238230  238234  238236  238238  238239  238240  238242  238243  238244  238246  238248  238252  238254  238258  238260  238264  238270  238272  238278  238282  238284  238288  238294  238300  238302  238308  238312  238314  238320  238324  238330  238338  266669 

科目: 来源: 题型:解答题

1.已知含有n个元素的正整数集A={a1,a2,…,an}(a1<a2<…<an,n≥3)具有性质P:对任意不大于S(A)(其中S(A)=a1+a2+…+an)的正整数k,存在数集A的一个子集,使得该子集所有元素的和等于k.
(Ⅰ)写出a1,a2的值;
(Ⅱ)证明:“a1,a2,…,an成等差数列”的充要条件是“S(A)=$\frac{n(n+1)}{2}$”;
(Ⅲ)若S(A)=2017,求当n取最小值时an的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n天监测空气质量指数(AQI),数据统计如下:
空气质量指数(μg/m30-5051-100101-150151-200201-250
空气质量等级空气优空气良轻度污染中度污染重度污染
天数2040m105
(1)根据所给统计表和频率分布直方图中的信息求出n,m的值,并完成頻率分布直方图:

(2)由頻率分布直方图,求该组数据的平均数与中位数;
(3)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A“两天空气都为良”发生的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知两个等高的几何体在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为2b,高皆为a的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面β上.以平行于平面β的平面于距平面β任意高d处可横截得到S及S两截面,可以证明S=S总成立.则短轴长为4cm,长轴为6cm的椭球体的体积为16πcm3

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知函数f(x)=$\frac{1}{2}$ax2+bx+1,其中a∈{2,4},b∈{1,3},从f(x)中随机抽取1个,则它在(-∞,-1]上是减函数的概率为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{1}{6}$D.0

查看答案和解析>>

科目: 来源: 题型:选择题

17.复数z=(a+1)+(a2-3)i,若z<0,则实数a的值是(  )
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

16.祖暅(公元前5-6世纪),祖冲之之子,是我国齐梁时代的数学家.他提出了一条原理:“幂势既同,則积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为2b,高皆为a的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面β上.以平行于平面β的平面于距平面β任意高d处可横截得到S及S两截面,可以证明S=S知总成立.据此,短轴长为4cm,长轴为6cm的椭球体的体积是16πcm3

查看答案和解析>>

科目: 来源: 题型:填空题

15.若随机变量X~N(2,32),且P(X≤1)=P(X≥a),则(x+a)2(ax-$\frac{1}{\sqrt{x}}$)5展开式中x3项的系数是1620.

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知a=${∫}_{0}^{1}$(x2-1)dx,b=1-log23,c=cos$\frac{5π}{6}$,则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.a<c<bD.b<c<a

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知$f(α)=\frac{{sin({\frac{π}{2}-α})sin({-α})tan({π-α})}}{{tan({-α})sin({π-α})}}$.
(Ⅰ)化简f(α);       
(Ⅱ)若α为第四象限角,且$cos({\frac{3}{2}π-α})=\frac{2}{3}$,求f(α)的值.

查看答案和解析>>

科目: 来源: 题型:填空题

12.甲乙两人从1,2,3,…,10中各任取一数(不重复),已知甲取到的数是5的倍数,则甲数大于乙数的概率为$\frac{13}{18}$.

查看答案和解析>>

同步练习册答案