相关习题
 0  238160  238168  238174  238178  238184  238186  238190  238196  238198  238204  238210  238214  238216  238220  238226  238228  238234  238238  238240  238244  238246  238250  238252  238254  238255  238256  238258  238259  238260  238262  238264  238268  238270  238274  238276  238280  238286  238288  238294  238298  238300  238304  238310  238316  238318  238324  238328  238330  238336  238340  238346  238354  266669 

科目: 来源: 题型:填空题

2.函数y=-$\frac{2}{3}$x3+(a+$\frac{1}{a}$)x2-2x+4(a<-1)的递减区间为(a,$\frac{1}{a}$).

查看答案和解析>>

科目: 来源: 题型:选择题

1.如图,方格纸上正方形小格的边长为1,图中粗实线画出的是由一个正方体截得的一个几何体的三视图,则该几何体的体积为(  )
A.$\frac{16}{3}$B.$\frac{32}{3}$C.$\frac{64}{3}$D.32

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知圆C的方程(x-1)2+y2=1,P是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一点,过P作圆的两条切线,切点为A,B,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围为[2$\sqrt{2}$-3,$\frac{56}{9}$].

查看答案和解析>>

科目: 来源: 题型:解答题

19.在直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,设曲线C参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

18.一个四面体的三视图如右图,在三视图中的三个正方形的边长都是$\sqrt{2}$,则该多面体的体积、表面积、外接球面的表面积分别为(  )
A.2$\sqrt{2}$,12,4πB.$\frac{2\sqrt{2}}{3}$,4$\sqrt{3}$,6πC.$\frac{\sqrt{3}}{3}$,6,$\sqrt{6}$πD.$\sqrt{2}$,2$\sqrt{3}$,$\frac{2}{3}$π

查看答案和解析>>

科目: 来源: 题型:选择题

17.某程序框图如图所示,该程序运行结束时输出的S的值为(  )
A.1007B.1008C.2016D.3024

查看答案和解析>>

科目: 来源: 题型:填空题

16.核算某项税率,需用公式K=(1-7x)n(n∈N*).现已知K的展开式中各项的二项式系数之和是64,用四舍五入的方法计算当$x=\frac{3}{700}$时K的值.若精确到0.001,其千分位上的数字应是4.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知a,b∈[-1,1],则不等式x2-2ax+b≥0在x∈R上恒成立的概率为$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.设函数f(x)=sin2(x+$\frac{π}{4}$)-cos2(x+$\frac{π}{4}$)(x∈R),则函数f(x)是(  )
A.最小正周期为π的奇函数B.最小正周期为π的偶函数
C.最小正周期为$\frac{π}{2}$的奇函数D.最小正周期为$\frac{π}{2}$的偶函数

查看答案和解析>>

科目: 来源: 题型:解答题

13.在平面直角坐标系xOy中,已知椭圆C的参数方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),以原点为极坐标系的极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程θ=$\frac{π}{4}$(ρ∈R),设直线l与椭圆C相交于A,B,求线段AB的长.

查看答案和解析>>

同步练习册答案