相关习题
 0  238178  238186  238192  238196  238202  238204  238208  238214  238216  238222  238228  238232  238234  238238  238244  238246  238252  238256  238258  238262  238264  238268  238270  238272  238273  238274  238276  238277  238278  238280  238282  238286  238288  238292  238294  238298  238304  238306  238312  238316  238318  238322  238328  238334  238336  238342  238346  238348  238354  238358  238364  238372  266669 

科目: 来源: 题型:选择题

2.将一枚质地均匀的硬币连续抛掷n次,若使得至少有一次正面向上的概率大于或等于$\frac{15}{16}$,则n的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知数列{an}中,已知a1=1,a2=a,an+1=k(an+an+2)对任意n∈N*都成立,数列{an}的前n项和为Sn
(1)若{an}是等差数列,求k的值;
(2)若a=1,k=-$\frac{1}{2}$,求Sn
(3)是否存在实数k,使数列{am}是公比不为1的等比数列,且任意相邻三项am,am+1,am+2按某顺序排列后成等差数列?若存在,求出所有k的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,其中m<n,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].
则称函数f(x)是区间[m,n]上的“保值函数”,区间[m,n]称为“保值区间”.
(1)求证:函数g(x)=x2-2x不是定义域[0,1]上的“保值函数”.
(2)若函数f(x)=2+$\frac{1}{a}$-$\frac{1}{{a}^{2}x}$(a∈R,a≠0)是区间[m,n]上的“保值函数”,求a的取值范围.
(3)对(2)中函数f(x),若不等式|a2f(x)|≤2x对x≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.设函数f(x)=xln(x-1)-a(x-2).
(Ⅰ)若a=2017,求曲线f(x)在x=2处的切线方程;
(Ⅱ)若当x≥2时,f(x)≥0,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.设点M到坐标原点的距离和它到直线l:x=-m(m>0)的距离之比是一个常数$\frac{\sqrt{2}}{2}$.
(Ⅰ)求点M的轨迹;
(Ⅱ)若m=1时得到的曲线是C,将曲线C向左平移一个单位长度后得到曲线E,过点P(-2,0)的直线l1与曲线E交于不同的两点A(x1,y1),B(x2,y2),过F(1,0)的直线AF、BF分别交曲线E于点D、Q,设$\overrightarrow{AF}$=α$\overrightarrow{FD}$,$\overrightarrow{BF}$=β$\overrightarrow{FQ}$,α、β∈R,求α+β的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(Ⅰ)求图中a的值;
(Ⅱ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
 晋级成功晋级失败合计
16  
  50
合计   
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.400.250.150.100.050.025
k0.7801.3232.0722.7063.8415.024
(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知各项均不相等的等差数列{an}满足a1=1,且a1,a2,a5成等比数列.
(1)求{an}的通项公式;
(2)若bn=(-1)n$\frac{{a}_{n}+{a}_{n+1}}{{a}_{n}{a}_{n+1}}$(n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知在平面四边形ABCD中,AB=$\sqrt{2}$,BC=2,AC⊥CD,AC=CD,则四边形ABCD面积的最大值为3+$\sqrt{10}$.

查看答案和解析>>

科目: 来源: 题型:填空题

14.在区间[0,1]上随机地取两个数x、y,则事件“y≤x5”发生的概率为$\frac{1}{6}$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知sin($\frac{π}{3}$-α)=$\frac{1}{3}$(0<α<$\frac{π}{2}$),则sin($\frac{π}{6}$+α)=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案