相关习题
 0  238183  238191  238197  238201  238207  238209  238213  238219  238221  238227  238233  238237  238239  238243  238249  238251  238257  238261  238263  238267  238269  238273  238275  238277  238278  238279  238281  238282  238283  238285  238287  238291  238293  238297  238299  238303  238309  238311  238317  238321  238323  238327  238333  238339  238341  238347  238351  238353  238359  238363  238369  238377  266669 

科目: 来源: 题型:选择题

12.已知集合A={x|0≤x≤5},B={x∈N*|x-1≤2}则A∩B=(  )
A.{x|1≤x≤3}B.{x|0≤x≤3}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=|2x+4|+|x-a|.
(Ⅰ)当a<-2时,f(x)的最小值为1,求实数a的值.
(Ⅱ)当f(x)=|x+a+4|时,求x的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在△ABC中,内角A,B,C的对边分别是a,b,c,且$\frac{sinC}{sinA-sinB}$=$\frac{a+b}{a-c}$.
(Ⅰ)求角B的大小;
(Ⅱ)点D满足$\overrightarrow{BD}$=2$\overrightarrow{BC}$,且线段AD=3,求2a+c的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知过抛物线y2=2px(p>0)的焦点F的直线与抛物线交于A,B两点,且$\overrightarrow{AF}$=3$\overrightarrow{FB}$,抛物线的准线l与x轴交于点C,AA1⊥l于点A1,若四边形AA1CF的面积为12$\sqrt{3}$,则准线l的方程为(  )
A.x=-$\sqrt{2}$B.x=-2$\sqrt{2}$C.x=-2D.x=-1

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若2x+y+k≥0恒成立,则直线2x+y+k=0被圆(x-1)2+(y-2)2=25截得的弦长的最大值为(  )
A.10B.2$\sqrt{5}$C.4$\sqrt{5}$D.3$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知函数f(x)在(-1,+∞)上单调,且函数y=f(x-2)的图象关于x=1对称,若数列{an}是公差不为0的等差数列,且f(a50)=f(a51),则{an}的前100项的和为(  )
A.-200B.-100C.0D.-50

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知三个向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面,且均为单位向量,$\overrightarrow{a}$•$\overrightarrow{b}$=0,则|$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$|的取值范围是(  )
A.[$\sqrt{2}$-1,$\sqrt{2}$+1]B.[1,$\sqrt{2}$]C.[$\sqrt{2}$,$\sqrt{3}$]D.[$\sqrt{2}$-1,1]

查看答案和解析>>

科目: 来源: 题型:选择题

5.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为π,其图象关于直线x=$\frac{π}{3}$对称,则|φ|的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{5π}{12}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.函数f(x)=ex-3x-1(e为自然对数的底数)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:选择题

3.下列说法错误的是(  )
A.回归直线过样本点的中心($\overline{x}$,$\overline{y}$)
B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1
C.对分类变量X与Y,随机变量K2的观测值越大,则判断“X与Y有关系”的把握程度越小
D.在回归直线方程$\stackrel{∧}{y}$=0.2x+0.8中,当解释变量x每增加1个单位时预报变量$\stackrel{∧}{y}$平均增加0.2个单位

查看答案和解析>>

同步练习册答案