相关习题
 0  238198  238206  238212  238216  238222  238224  238228  238234  238236  238242  238248  238252  238254  238258  238264  238266  238272  238276  238278  238282  238284  238288  238290  238292  238293  238294  238296  238297  238298  238300  238302  238306  238308  238312  238314  238318  238324  238326  238332  238336  238338  238342  238348  238354  238356  238362  238366  238368  238374  238378  238384  238392  266669 

科目: 来源: 题型:解答题

6.设函数f(x)=lnx+$\frac{a}{x-1}$(a>0).
(Ⅰ)当a=$\frac{1}{12}$时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在区间(0,$\frac{1}{e}$)内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:f(x2)-f(x1)>e+2-$\frac{1}{e}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.下列命题错误的是(  )
A.命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0无实数根,则m≤0”.
B.对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0.
C.若p∧q为假命题,则p,q中至少一个为假命题.
D.“$θ=2kπ+\frac{π}{6}$”是“$sinθ=\frac{1}{2}$”的充要条件.

查看答案和解析>>

科目: 来源: 题型:选择题

4.一线性规划问题的可行域为坐标平面上的正八边形ABCDEFGH及其内部(如图),已知目标函数z=3+ax+by(a,b∈R)的最大值只在顶点B处,如果目标函数变成z=3-bx-ay时,最大值只在顶点(  )
A.AB.BC.CD.D

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y≥1\\ x+y≥1\\ 2x-y≤4\end{array}\right.$,则$z=\frac{{{y^2}+\frac{1}{3}xy+{x^2}}}{x^2}$的最大值与最小值的比值 为(  )
A.$\frac{12}{7}$B.$\frac{77}{75}$C.$\frac{95}{36}$D.$\frac{125}{77}$

查看答案和解析>>

科目: 来源: 题型:填空题

2.“?x∈R,ax2-2ax+3≤0”是假命题,则a的取值范围是[0,3).

查看答案和解析>>

科目: 来源: 题型:选择题

1.若函数$f(x)=\frac{x}{{({2x+1})({x-a})}}$为奇函数,则a=(  )
A.$\frac{3}{4}$B.1C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.己知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[-3,0]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知函数$f(x)=\left\{\begin{array}{l}-x+2,x≥a\\{x^2}+3x+2,x<a.\end{array}\right.$恰有两个不同的零点,则a的取值范围是(1,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知直线l:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α为l的倾斜角),曲线C的极坐标方程为ρ2-6ρcosθ+5=0
(1)若直线l与曲线C相切,求α的值;
(2)设曲线C上任意一点为P(x,y),求x+y的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知函数y=f(x),x∈R是奇函数,其部分图象如图所示,则在(-1,0)上与函数f(x)的单调性相同的是(  )
A.$y=x+\frac{1}{x}$B.y=log2|x|
C.$y=\left\{{\begin{array}{l}{e^x}&{x≥0}\\{{e^{-x}}}&{x<0}\end{array}}\right.$D.y=cos(2x)

查看答案和解析>>

同步练习册答案