相关习题
 0  238232  238240  238246  238250  238256  238258  238262  238268  238270  238276  238282  238286  238288  238292  238298  238300  238306  238310  238312  238316  238318  238322  238324  238326  238327  238328  238330  238331  238332  238334  238336  238340  238342  238346  238348  238352  238358  238360  238366  238370  238372  238376  238382  238388  238390  238396  238400  238402  238408  238412  238418  238426  266669 

科目: 来源: 题型:解答题

9.已知等比数列{an}的前n项和为Sn,a1=1,且S1,2S2,3S3成等差数列.
(1)求数列{an}的通项公式;
(2)设$\frac{1}{b_n}={log_3}{a_{n+1}}•lo{g_3}{a_{n+2}}$求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知数列{an}是等差数列,前n项和Sn,若S20>0,S21<0,那么Sn取得最大值时n=(  )
A.20B.21C.11D.10

查看答案和解析>>

科目: 来源: 题型:填空题

7.$({\begin{array}{l}1&2\\ 3&{-1}\end{array}})({\begin{array}{l}4\\ 2\end{array}})$=$(\begin{array}{l}{8}\\{10}\end{array})$.

查看答案和解析>>

科目: 来源: 题型:填空题

6.f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,求m的范围m≤-16.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知两点A(0,1),B(4,3),则线段AB的垂直平分线方程是2x+y-6=0.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数$f(x)=\frac{4}{4x+15}$.
(Ⅰ)求方程f(x)-x=0的实数解;
(Ⅱ)如果数列{an}满足a1=1,an+1=f(an)(n∈N*),是否存在实数c,使得a2n<c<a2n-1对所有的n∈N*都成立?证明你的结论.
(Ⅲ)在(Ⅱ)的条件下,设数列{an}的前n项的和为Sn,证明:$\frac{1}{4}<\frac{S_n}{n}≤1$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1、F2,离心率为$\frac{1}{2}$,直线y=1与C的两个交点间的距离为$\frac{{4\sqrt{6}}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)分别过F1、F2作l1、l2满足l1∥l2,设l1、l2与C的上半部分分别交于A、B两点,求四边形ABF2F1面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知a∈R,函数$f(x)=\frac{2}{x}+alnx$.
(Ⅰ)若函数f(x)在(0,2)上递减,求实数a的取值范围;
(Ⅱ)当a>0时,求f(x)的最小值g(a)的最大值;
(Ⅲ)设h(x)=f(x)+|(a-2)x|,x∈[1,+∞),求证:h(x)≥2.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD为梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分别是AD,PB的中点.
(Ⅰ)求证:PD∥平面OCM;
(Ⅱ)若AP与平面PBD所成的角为60°,求线段PB的长.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知0≤φ<π,函数$f(x)=\frac{{\sqrt{3}}}{2}cos(2x+φ)+{sin^2}x$.
(Ⅰ)若$φ=\frac{π}{6}$,求f(x)的单调递增区间;
(Ⅱ)若f(x)的最大值是$\frac{3}{2}$,求φ的值.

查看答案和解析>>

同步练习册答案