相关习题
 0  238298  238306  238312  238316  238322  238324  238328  238334  238336  238342  238348  238352  238354  238358  238364  238366  238372  238376  238378  238382  238384  238388  238390  238392  238393  238394  238396  238397  238398  238400  238402  238406  238408  238412  238414  238418  238424  238426  238432  238436  238438  238442  238448  238454  238456  238462  238466  238468  238474  238478  238484  238492  266669 

科目: 来源: 题型:填空题

15.i2017=i.

查看答案和解析>>

科目: 来源: 题型:选择题

14.下面使用类比推理正确的是(  )
A.直线a,b,c,若a∥b,b∥c,则a∥c.类推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$
B.同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b.类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b
C.若a,b∈R,则a-b>0⇒a>b.类推出:若a,b∈C,则a-b>0⇒a>b
D.由向量加法的几何意义,可以类比得到复数加法的几何意义.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{{\sqrt{2}}}{2}$,且过点$(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$.
(1)求椭圆C的方程;
(2)如图,过椭圆C的右焦点F作两条相互垂直的直线AB,DE交椭圆分别于A,B,D,E,且满足$\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AB}$,$\overrightarrow{DN}=\frac{1}{2}\overrightarrow{DE}$,求△MNF面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=x3-alnx.
(1)当a=3,求f(x)的单调递增区间;
(2)若函数g(x)=f(x)-9x在区间$[\frac{1}{2},2]$上单调递减,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.甲、乙、丙三人每人有一张游泳比赛的门票,已知每张票可以观看指定的三场比赛中的任一场(三场比赛时间不冲突),甲乙二人约定他们会观看同一场比赛并且他俩观看每场比赛的可能性相同,又已知丙观看每一场比赛的可能性也相同,且甲乙的选择与丙的选择互不影响.
(1)求三人观看同一场比赛的概率;
(2)记观看第一场比赛的人数是X,求X的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图所示,PA⊥平面ABCD,底面ABCD为菱形,$∠ABC=\frac{π}{3}$,PA=AB=4,AC交BD于O,点N是PC的中点.
(1)求证:BD⊥平面PAC;
(2)求平面ANC与平面ANB所成的锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.函数f(x)=x3+x在x=1处的切线为m.
(1)求切线m的方程;
(2)若曲线g(x)=sinx+ax在点A(0,g(0))处的切线与m垂直,求实数a的取值.

查看答案和解析>>

科目: 来源: 题型:填空题

8.四位同学参加知识竞赛,每位同学须从甲乙两道题目中任选一道题目作答,答对甲可得60分,答错甲得-60分,答对乙得180分,答错乙得-180分,结果是这四位同学的总得分为0分,那么不同的得分情况共计有44种.

查看答案和解析>>

科目: 来源: 题型:填空题

7.半径分别为5,6的两个圆相交于A,B两点,AB=8,且两个圆所在平面相互垂直,则它们的圆心距为$\sqrt{29}$.

查看答案和解析>>

科目: 来源: 题型:填空题

6.设变量x,y满足条件$\left\{\begin{array}{l}2x+y-2≥0\\ x-2y+4≥0\\ x-1≤0\end{array}\right.$,则目标函数z=x-y的最小值为-2.

查看答案和解析>>

同步练习册答案