相关习题
 0  238350  238358  238364  238368  238374  238376  238380  238386  238388  238394  238400  238404  238406  238410  238416  238418  238424  238428  238430  238434  238436  238440  238442  238444  238445  238446  238448  238449  238450  238452  238454  238458  238460  238464  238466  238470  238476  238478  238484  238488  238490  238494  238500  238506  238508  238514  238518  238520  238526  238530  238536  238544  266669 

科目: 来源: 题型:解答题

14.已知函数f(x)=x3-3x.
(Ⅰ)若曲线y=f(x)与直线y=m有且只有一个公共点,求m的取值范围;
(Ⅱ)过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

13.平面上若一个三角形的周长为L,其内切圆的半径为R,则该三角形的面积S=$\frac{1}{2}LR$,类比到空间,若一个四面体的表面积为S,其内切球的半径为R,则该四面体的体积V=$\frac{1}{3}$SR.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知$\overrightarrow a,\overrightarrow b$均为单位向量,它们的夹角为60°,那么|$\overrightarrow{a}$-2$\overrightarrow{b}$|等于(  )
A.2B.$4-\sqrt{3}$C.$\sqrt{13}$D.$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.为了得到函数$y=3sin({\frac{1}{2}x-\frac{π}{5}})$,x∈R的图象,只需把函数$y=3sin({\frac{1}{2}x+\frac{π}{5}})$的图象上所有点(  )
A.向左平行移动$\frac{2π}{5}$个单位长度B.向右平行移动$\frac{2π}{5}$个单位长度
C.向左平行移动$\frac{4π}{5}$个单位长度D.向右平行移动$\frac{4π}{5}$个单位长度

查看答案和解析>>

科目: 来源: 题型:填空题

10.某学校的组织结构图如下:

则保卫科的直接领导是副校长乙.

查看答案和解析>>

科目: 来源: 题型:选择题

9.设公比大于零的等比数列{an}的前n项和为Sn,且a1=1,S4=5S2,数列{an}的通项公式(  )
A.an=2n-1B.an=3nC.2D.an=5n

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知某产品的广告费用x与销售额y之间有如下的对应数据:
x(万元) 2 4 5 6 8
y(万元) 30 40 60 50 70
(1)y与x是否具有线性相关关系?若有,求出y对x的线性回归方程;
(2)据此估计广告费用为11万元时销售额的值.
(参考公式:$\stackrel{∧}{b}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目: 来源: 题型:选择题

7.若点P的直角坐标为(1,$\sqrt{3}$),则它的极坐标可以是(  )
A.(2,-$\frac{π}{3}$)B.(2,$\frac{4π}{3}$)C.(2,$\frac{π}{3}$)D.(2,-$\frac{4π}{3}$)

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=alnx+bx2的图象在点(1,f(1))处的切线方程为x-y-1=0,g(x)=2af(x+t),t∈R且t≤2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求证:g(x)<ex+f(x+t).

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,平面ABEF⊥平面CBED,四边形ABEF为直角梯形,∠AFE=∠FEB=90°,四边形CBED为等腰梯形,CD∥BE,且BE=2AF=2CD=2BC=2EF=4.
(Ⅰ)若梯形CBED内有一点G,使得FG∥平面ABC,求点G的轨迹;
(Ⅱ)求平面ABC与平面ACDF所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案