相关习题
 0  238374  238382  238388  238392  238398  238400  238404  238410  238412  238418  238424  238428  238430  238434  238440  238442  238448  238452  238454  238458  238460  238464  238466  238468  238469  238470  238472  238473  238474  238476  238478  238482  238484  238488  238490  238494  238500  238502  238508  238512  238514  238518  238524  238530  238532  238538  238542  238544  238550  238554  238560  238568  266669 

科目: 来源: 题型:填空题

18.若向量$λ\overrightarrow{e_1}-\overrightarrow{e_2}$与$\overrightarrow{e_1}-λ\overrightarrow{e_2}$共线,其中$\overrightarrow{e_1},\overrightarrow{e_2}$为不共线的单位单位向量,则实数λ的值等于±1.

查看答案和解析>>

科目: 来源: 题型:选择题

17.在直角坐标系中,点P坐标是(-3,3),以原点为极点,x轴正半轴为极轴建立的极坐标系中,点P的极坐标是(  )
A.$({3\sqrt{2},\frac{3π}{4}})$B.$({3\sqrt{2},\frac{5π}{4}})$C.$({3,\frac{5π}{4}})$D.$({3,\frac{3π}{4}})$

查看答案和解析>>

科目: 来源: 题型:选择题

16.设f(x)=(x-2)2ex+ae-x,g(x)=2a|x-2|(e为自然对数的底数),若关于x方程f(x)=g(x)有且仅有6个不等的实数解.则实数a的取值范围是(  )
A.($\frac{{e}^{2}}{2e-1}$,+∞)B.(e,+∞)C.(1,e)D.(1,$\frac{{e}^{2}}{2e-1}$)

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知函数f(x)=x2-mx-m2,则f(x)(  )
A.有一个零点B.有两个零点
C.有一个或两个零点D.无零点

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知数列{an}满足:a1=4,an+1=$\frac{n+2}{n}$an+4+$\frac{4}{n}$(n∈N*),则an=5n2+n-2.

查看答案和解析>>

科目: 来源: 题型:解答题

13.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)设g(x)=2x+m,若对任意的x∈[-1,1],f(x)>g(x)恒成立,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在6件产品中有2件次品,连续抽3次,每次抽1件,求:
(1)不放回抽样时,抽到次品数ξ的分布列;
(2)放回抽样时,抽到次品数η的分布列.

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知B(m,2b)是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=l(a>0,b>0)的右支上一点,A为右顶点,O为坐标原点,若∠AOB=60°,则该双曲线的渐近线方程为(  )
A.y=±$\frac{{\sqrt{10}}}{2}x$B.y=±$\frac{{\sqrt{13}}}{2}x$C.y=±$\frac{{\sqrt{15}}}{2}x$D.y=±$\frac{{\sqrt{19}}}{2}x$

查看答案和解析>>

科目: 来源: 题型:填空题

10.关于x的不等式$\frac{1}{2}$<sinx≤$\frac{\sqrt{3}}{2}$,x∈[0,2π]的解集为($\frac{π}{6}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{6}$).

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知实数x,y满足$\left\{\begin{array}{l}{y≥x+2}\\{\frac{x}{4}+\frac{y}{4}≤1}\\{y≥2-\frac{x}{2}}\end{array}\right.$,则z=($\frac{1}{2}$)2x-y的最小值为$\frac{1}{256}$.

查看答案和解析>>

同步练习册答案