相关习题
 0  238400  238408  238414  238418  238424  238426  238430  238436  238438  238444  238450  238454  238456  238460  238466  238468  238474  238478  238480  238484  238486  238490  238492  238494  238495  238496  238498  238499  238500  238502  238504  238508  238510  238514  238516  238520  238526  238528  238534  238538  238540  238544  238550  238556  238558  238564  238568  238570  238576  238580  238586  238594  266669 

科目: 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,记bn=$\frac{{S}_{n+1}}{n}$.
(1)若{an}是首项为a、公差为d的等差数列,其中a,d均为正数.
①当3b1,2b2,b3成等差数列时,求$\frac{a}{d}$的值;
②求证:存在唯一的正整数n,使得an+1≤bn<an+2
(2)设数列{an}是公比为q(q>2)的等比数列,若存在r,t(r,t∈N*,r<t)使得$\frac{{b}_{t}}{{b}_{r}}$=$\frac{t+2}{r+2}$,求q的值.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{113}{3}$B.35C.$\frac{104}{3}$D.$\frac{107}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.过直线y=x+1上的点P作圆C:(x-1)2+(y-6)2=2的两条切线l1,l2,当直线l1,l2关于直线y=x+1对称时,|PC|=(  )
A.3B.2$\sqrt{2}$C.1+$\sqrt{2}$D.2

查看答案和解析>>

科目: 来源: 题型:选择题

15.如图所示的流程图,若输入某个正整数n后,输出的S∈($\frac{15}{16}$,$\frac{63}{64}$),则输入的n的值为(  )
A.7B.6C.5D.4

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=|x+1-2a|+|x-a2|,g(x)=x2-2x-4+$\frac{4}{(x-1)^{2}}$
(Ⅰ)若f(2a2-1)>4|a-1|,求实数a的取值范围;
(Ⅱ)若存在实数x,y,使f(x)+g(y)≤0,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.在极坐标系中,点A($\sqrt{3}$,$\frac{π}{6}$)、B($\sqrt{3}$,$\frac{π}{2}$),直线l平行于直线AB,且将封闭曲线C:ρ=2cos(θ-$\frac{π}{3}$)(ρ≥0)所围成的面积平分,以极点为坐标原点,极轴为x轴正半轴建立直角坐标系
(Ⅰ)在直角坐标系中,求曲线C及直线l的参数方程;
(Ⅱ)设点M为曲线C上的动点,求|MA|2+|MB|2的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在三棱柱ABC-A1B1C1中,D为BC的中点,∠BAC=90°,∠A1AC=60°,AB=AC=AA1=2.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)当BC1=4时,求直线B1C与平面ADC1所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.数列{an}是公差为d(d≠0)的等差数列,Sn为其前n项和,a1,a2,a5成等比数列,
(Ⅰ)证明S1,S3,S9成等比数列;
(Ⅱ)设a1=1,bn=a${\;}_{{2}^{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

10.我国南宋时期著名的数学家秦九韶在其著作《数学九章》中独立提出了一种求三角形面积的方法-“三斜求积术”,即△ABC的面积S=$\sqrt{\frac{1}{4}[{a}^{2}{c}^{2}-(\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2})^{2}}]$.其中a,b,c分别为△ABC内角A、B、C的对边.若b=2,且tanC=$\frac{\sqrt{3}sinB}{1-\sqrt{3}cosB}$,则△ABC的面积S的最大值为$\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

9.若函数f(x)=x+$\frac{m}{x-1}$(m为大于0的常数)在(1,+∞)上的最小值为3,则实数m的值为1.

查看答案和解析>>

同步练习册答案