相关习题
 0  238441  238449  238455  238459  238465  238467  238471  238477  238479  238485  238491  238495  238497  238501  238507  238509  238515  238519  238521  238525  238527  238531  238533  238535  238536  238537  238539  238540  238541  238543  238545  238549  238551  238555  238557  238561  238567  238569  238575  238579  238581  238585  238591  238597  238599  238605  238609  238611  238617  238621  238627  238635  266669 

科目: 来源: 题型:选择题

3.若复数z满足(z-3)(1-3i)=10(i为虚数单位),则z的模为(  )
A.$\sqrt{5}$B.5C.$2\sqrt{6}$D.25

查看答案和解析>>

科目: 来源: 题型:填空题

2.若直线y=kx与曲线y=x+e-x相切,则k=1-e.

查看答案和解析>>

科目: 来源: 题型:选择题

1.直角△ABC中,AD为斜边BC边的高,若$|{\overrightarrow{AC}}|=1$,$|{\overrightarrow{AB}}|=3$,则$\overrightarrow{CD}•\overrightarrow{AB}$=(  )
A.$\frac{9}{10}$B.$\frac{3}{10}$C.$-\frac{3}{10}$D.$-\frac{9}{10}$

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$|\overrightarrow a+\overrightarrow b|=\sqrt{5}$,则$|2\overrightarrow a-\overrightarrow b|$=2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知函数$f(x)=\left\{\begin{array}{l}{2^{x-1}},x>1\\ tan\frac{πx}{3},x≤1\end{array}\right.$则$f(\frac{1}{f(2)})$=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

18.数据a1、a2、a3、…、an的方差为S2,则数据2a1-3,2a2-3、2a3-3、…、2an-3的标准差为2S.

查看答案和解析>>

科目: 来源: 题型:选择题

17.为比较甲乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据(位:℃)制成如图所示的茎叶图,已知甲地该月11时的平均气温比乙地该月11时的平均气温高1℃,则甲地该月11时的平均气温的标准差为(  )
A.2B.$\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目: 来源: 题型:填空题

16.中国古代数学经典<<九章算术>>中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑(biē nào).若三棱锥P-ABC为鳖臑,且PA⊥平面ABC,PA=AB=2,又该鳖臑的外接球的表面积为24π,则该鳖臑的体积为$\frac{8}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD,E,F分别为PD,BC的中点.
(1)求证:AE⊥PC;
(2)G为线段PD上一点,若FG∥平面AEC,求$\frac{PG}{PD}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.现阶段全国多地空气质量指数“爆表”.为探究车流量与PM2.5浓度是否相关,现对北方某中心城市的车流量最大的地区进行检测,现采集到12月某天7个不同时段车流量与PM2.5浓度的数据,如下表:
车流量x(万辆/小时)1234567
PM2.5浓度y(微克/立方米)30363840424450
(1)根据上表中的数据,用最小二乘法求出y关于x的线性回归方程;
(2)规定当PM2.5浓度平均值在(0,50],空气质量等级为优;当PM2.5浓度平均值在(50,100],空气质量等级为良;为使该城市空气质量为优和良,利用该回归方程,预测要将车流量控制在每小时多少万辆内(结果以万辆做单位,保留整数).
附:回归直线方程:$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y=\widehatb\overline x$.

查看答案和解析>>

同步练习册答案