相关习题
 0  238486  238494  238500  238504  238510  238512  238516  238522  238524  238530  238536  238540  238542  238546  238552  238554  238560  238564  238566  238570  238572  238576  238578  238580  238581  238582  238584  238585  238586  238588  238590  238594  238596  238600  238602  238606  238612  238614  238620  238624  238626  238630  238636  238642  238644  238650  238654  238656  238662  238666  238672  238680  266669 

科目: 来源: 题型:选择题

9.我国古代数学名著《九章算术》第三章“衰分”介绍比例分配:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别得100,60,36,21.6个单位,递减的比例是40%,今共有粮食m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丁分得2石,乙、丙所得之和为40石,则衰分比与m的值分别是(  )
A.75%,170B.75%,340C.25%,170D.25%,340

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知$\overrightarrow{a}$为单位向量,$\overrightarrow{b}$=(0,2),且$\overrightarrow{a}$$•\overrightarrow{b}$=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.如图,在棱长均相等的正三棱柱ABC-A1B1C1中,异面直线AA1与BC1的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知tanα=$\frac{3}{4}$,则sin2α=(  )
A.$-\frac{12}{25}$B.$\frac{12}{25}$C.$-\frac{24}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知$f(x)=x{e^{ax}}-\frac{a}{2}{x^2}$-x+1,a≠0
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若?x0>1,使$f({x_0})<\frac{a}{2}$成立,求参数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=$\frac{{{e^x}-a}}{x}$-alnx,其中a>0,x>0,e是自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设函数g(x)=$\frac{1+xlnx}{e^x}$,证明:0<g(x)<1.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距为4,左、右焦点分别为F1、F2,且C1与抛物线C2:y2=x的交点所在的直线经过F2
(Ⅰ)求椭圆C1的方程;
(Ⅱ)过F1的直线l与C1交于A,B两点,与抛物线C2无公共点,求△ABF2的面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,矩形ABCD中,AB=4,AD=2,E在DC边上,且DE=1,将△ADE沿AE折到△AD'E的位置,使得平面AD'E⊥平面ABCE.
(Ⅰ)求证:AE⊥BD';
(Ⅱ)求三棱锥A-BCD'的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

1.某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加x元,对应的销量y(万份)与x(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组x与y的对应数据:
x(元)2530384552
销售y(万册)7.57.16.05.64.8
据此计算出的回归方程为$\hat y=10.0-bx$.
(i)求参数b的估计值;
(ii)若把回归方程$\hat y=10.0-bx$当作y与x的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知{an}是等差数列,{bn}是各项均为正数的等比数列,且b1=a1=1,b3=a4,b1+b2+b3=a3+a4
(1)求数列{an},{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案