相关习题
 0  238487  238495  238501  238505  238511  238513  238517  238523  238525  238531  238537  238541  238543  238547  238553  238555  238561  238565  238567  238571  238573  238577  238579  238581  238582  238583  238585  238586  238587  238589  238591  238595  238597  238601  238603  238607  238613  238615  238621  238625  238627  238631  238637  238643  238645  238651  238655  238657  238663  238667  238673  238681  266669 

科目: 来源: 题型:选择题

19.$\frac{(x+y+1)^{5}}{xy}$展开式中的常数项为(  )
A.20B.10C.5D.1

查看答案和解析>>

科目: 来源: 题型:选择题

18.各项均不为零的等差数列{an}的前n项和为Sn,则$\frac{{S}_{5}}{{a}_{3}}$的值是(  )
A.$\frac{1}{2}$B.1C.$\frac{5}{2}$D.5

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知集合A={x|x>0},B={x|x2-2x-3<0},则A∩B=(  )
A.(-1,0)B.(0,3)C.(-∞,0)∪(3,+∞)D.(-1,3)

查看答案和解析>>

科目: 来源: 题型:解答题

16.设f(x)=|x+a|-|x+1|.
(Ⅰ)求不等式f(a)>1的解集;
(Ⅱ)当x∈R时,f(x)≤2a(a∈R),求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=x2lnax(a>0).
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)当a=e时,证明:t>0时,存在唯一的s,使ts2+t2=f(s).

查看答案和解析>>

科目: 来源: 题型:解答题

14.经统计,2015年,某公路在部分界桩附近发生的交通事故次数如下表:
界桩公里数  100110051010102010251049
交通事故数  804035333230

(Ⅰ)把界桩公里数1001记为x=1,公里数1005记为x=5,…,数据绘成的散点图如图所示,以x为解释变量、交通事故数y为预报变量,请在y=a+be-x和y=a+$\frac{b}{x}$间选取一个建立回归方程表述x,y二者之间的关系(a,b的值精确到0.1);
(Ⅱ)若保险公司在2015年交通事故中随机抽取100例,理赔60万元的有1例,理赔2万元的有19例,理赔0.2万元的有80例.
      利用你得到的回归方程,试预报这一年在界桩1040公里附近处发生的交通事故的理赔费(理赔费精确到0.1万元).
附:回归直线v=$\widehat{α}$+$\widehat{β}$u的斜率和截距的最小二乘法估计分别为:
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.
一些量的计算值:
$\overline{x}$   $\overline{y}$        $\overline{ω}$        $\overline{φ}$ $\sum_{i=1}^{6}({ω}_{i}-\overline{ω})^{2}$ $\sum_{i=1}^{6}({φ}_{i}-\overline{φ})^{2}$ $\sum_{i=1}^{6}({ω}_{i}-\overline{ω})({y}_{i}-\overline{y})$ $\sum_{i=1}^{6}({φ}_{i}-\overline{φ})({y}_{i}-\overline{y})$
18.341.7  0.235  0.062 0.723 0.112 36.3 14.1
表中:ωi=$\frac{1}{{x}_{i}}$,$\overline{ω}$=$\frac{1}{6}$$\sum_{i=1}^{6}{ω}_{i}$;φi=e${\;}^{-{x}_{i}}$,$\overline{φ}$=$\frac{1}{6}$$\sum_{i=1}^{6}{φ}_{i}$,$\frac{1}{40}$=0.025,e-40≈0.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知a1=$\frac{1}{2}$a2≠0,数列{an}的前n项和为Sn,且Sn+1=3Sn-2Sn-1(n≥2),设bn=$\frac{{S}_{n}}{{a}_{n}}$(n∈N*).
(1)求数列{bn}的通项公式;
(2)设cn=nbn+$\frac{n+1}{{2}^{n}}$(n∈N*),数列{cn}的前n项和为Tn,证明:T10>109.

查看答案和解析>>

科目: 来源: 题型:填空题

12.函数f(x)=xex+1的图象在点(0,f(0))处的切线方程是x-y+1=0.

查看答案和解析>>

科目: 来源: 题型:填空题

11.设复数z=1+i,则复数z+$\frac{2}{z}$=2.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知f(x)为偶函数,在[0,+∞)上f(x)=$\left\{\begin{array}{l}{a({x}^{3}-1),x∈[0,1]}\\{x+\frac{a}{x}-2,x∈(1,+∞)}\end{array}\right.$且为单调递增函数,则使得f(ax)>f(2x-1)成立的x的取值范围是(  )
A.($\frac{1}{3}$,1)B.(-∞,$\frac{1}{3}$)∪(1,+∞)C.(-$\frac{1}{3}$,1)D.D、(-∞,$-\frac{1}{3}$)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

同步练习册答案