相关习题
 0  238514  238522  238528  238532  238538  238540  238544  238550  238552  238558  238564  238568  238570  238574  238580  238582  238588  238592  238594  238598  238600  238604  238606  238608  238609  238610  238612  238613  238614  238616  238618  238622  238624  238628  238630  238634  238640  238642  238648  238652  238654  238658  238664  238670  238672  238678  238682  238684  238690  238694  238700  238708  266669 

科目: 来源: 题型:选择题

6.设函数f(x)=(ex-1)(x-1)k,k∈N*,若函数y=f(x)在x=1处取到极小值,则k的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:填空题

5.某校组织10名学生参加高校的自主招生活动,其中6名男生,4名女生,根据实际要从10名同学中选3名参加A校的自主招生,则其中恰有1名女生的概率是$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.对于函数f(x)=xlnx有如下结论:
①该函数为偶函数;
②若f′(x0)=2,则x0=e;
③其单调递增区间是[$\frac{1}{e}$,+∞);
④值域是[$\frac{1}{e}$,+∞);
⑤该函数的图象与直线y=-$\frac{1}{e}$有且只有一个公共点.(本题中e是自然对数的底数)
其中正确的是②③⑤(请把正确结论的序号填在横线上)

查看答案和解析>>

科目: 来源: 题型:填空题

3.欧拉公式exi=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e3i表示的复数在复平面中位于二象限.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知函数f(x)=asinx+bx3+1(a,b∈R),f′(x)为f(x)的导函数,则f(2016)+f(-2016)+f′(2017)-f′(-2017)=(  )
A.2017B.2016C.2D.0

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知数列{an}为等差数列,a1=2,{an}的前n项和为Sn,数列{bn}为等比数列,且a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+2+4对任意的n∈N*恒成立.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在非零整数λ,使不等式sin$\frac{{a}_{n}π}{4}$<$\frac{1}{λ(1-\frac{1}{{a}_{1}})(1-\frac{1}{{a}_{2}})…(1-\frac{1}{{a}_{n}})\sqrt{{a}_{n}+1}}$对一切n∈N*都成立?若存在,求出λ的值;若不存在,说明理由.
(3)各项均为正整数的无穷等差数列{cn},满足c39=a1007,且存在正整数k,使c1,c39,ck成等比数列,若数列{cn}的公差为d,求d的所有可能取值之和.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,已知O为△ABC的外心,角A、B、C的对边分别为a、b、c.
(1)若5$\overrightarrow{OA}$+4$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,求cos∠BOC的值;
(2)若$\overrightarrow{CO}$•$\overrightarrow{AB}$=$\overrightarrow{BO}$•$\overrightarrow{CA}$,求$\frac{{b}^{2}+{c}^{2}}{{a}^{2}}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,已知a1=1,an+1=$\frac{2n+3}{n}$Sn(n∈N*).
(1)证明:数列{$\frac{{S}_{n}}{n}$}是等比数列;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

18.点O是平面上一定点,A、B、C是平面上△ABC的三个顶点,∠B、∠C分别是边AC、AB的对角,以下命题正确的是①②③④⑤(把你认为正确的序号全部写上).
①动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$,则△ABC的重心一定在满足条件的P点集合中;
②动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)(λ>0),则△ABC的内心一定在满足条件的P点集合中;
③动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|sinB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|sinC}$)(λ>0),则△ABC的重心一定在满足条件的P点集合中;
④动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$)(λ>0),则△ABC的垂心一定在满足条件的P点集合中;
⑤动点P满足$\overrightarrow{OP}$=$\frac{\overrightarrow{OB}+\overrightarrow{OC}}{2}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$)(λ>0),则△ABC的外心一定在满足条件的P点集合中.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知A,B是单位圆上的两点,O为圆心,且∠AOB=90°,MN是圆O的一条直径,点C在圆内,且满足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),则$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值为(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.-$\frac{3}{4}$D.-1

查看答案和解析>>

同步练习册答案