相关习题
 0  238515  238523  238529  238533  238539  238541  238545  238551  238553  238559  238565  238569  238571  238575  238581  238583  238589  238593  238595  238599  238601  238605  238607  238609  238610  238611  238613  238614  238615  238617  238619  238623  238625  238629  238631  238635  238641  238643  238649  238653  238655  238659  238665  238671  238673  238679  238683  238685  238691  238695  238701  238709  266669 

科目: 来源: 题型:解答题

16.随着移动互联网的快速发展,基于互联网的共享单车应用而生,某市场研究人员为了了解共享单车运营公司M的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.
(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系,求y关于x的线性回归方程,并预测M公司2017年4月份(即x=7时)的市场占有率;
(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的A、B两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:
 报废年限
车型
 1年 2年 3年 4年 总计
 A 20 35 35 10 100
 B 10 30 40 20 100
经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
(参考公式:回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overrightarrow{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=alnx-x+$\frac{1}{x}$,g(x)=x2+x-b,y=f(x)的图象恒过定点P,且P点既在y=g(x)的图象上,又在y=f(x)的导函数的图象上.
(1)求a,b的值;
(2)设h(x)=$\frac{f(x)}{g(x)}$,当x>0且x≠1时,判断h(x)的符号,并说明理由;
(3)求证:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>lnn+$\frac{n+1}{2n}$(n≥2且n∈N*).

查看答案和解析>>

科目: 来源: 题型:解答题

14.若数列{An}对任意的n∈N*,都有${A_{n+1}}={A_n}^k$(k≠0),且An≠0,则称数列{An}为“k级创新数列”.
(1)已知数列{an}满足${a_{n+1}}=2{a_n}^2+2{a_n}$且${a_1}=\frac{1}{2}$,试判断数列{2an+1}是否为“2级创新数列”,并说明理由;
(2)已知正数数列{bn}为“k级创新数列”且k≠1,若b1=10,求数列{bn}的前n项积Tn
(3)设α,β是方程x2-x-1=0的两个实根(α>β),令$k=\frac{β}{α}$,在(2)的条件下,记数列{cn}的通项${c_n}={β^{n-1}}•{log_{b_n}}{T_n}$,求证:cn+2=cn+1+cn,n∈N*

查看答案和解析>>

科目: 来源: 题型:解答题

13.某学校为鼓励家校互动,与某手机通讯商合作,为教师伴侣流量套餐,为了解该校教师手机流量使用情况,通过抽样,得到100位教师近2年每人手机月平均使用流量L(单位:M)的数据,其频率分布直方图如下:若将每位教师的手机月平均使用流量分布视为其手机月使用流量,并将频率为概率,回答以下问题.
(1)从该校教师中随机抽取3人,求这3人中至多有1人月使用流量不超过300M的概率;
(2)现该通讯商推出三款流量套餐,详情如下:
 套餐名称月套餐费(单位:元) 月套餐流量(单位:M)
 A 20 300
 B 30 500
 C 38 700
这三款套餐都有如下附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值200M流量,资费20元;如果又超出充值流量,系统就再次自动帮用户充值200M流量,资费20元/次,依此类推,如果当流量有剩余,系统将自动清零,无法转入次月使用.
学校欲订购其中一款流量套餐,为教师支付月套餐费,并承担系统自动充值的流量资费的75%,其余部分由教师个人承担,问学校订购哪一款套餐最经济?说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.四边形ABCD中,AD∥BC,AB=2,AD=1,A=$\frac{2π}{3}$.
(1)求sin∠ADB;
(2)若sin∠BDC=$\frac{2π}{3}$,求四边形ABCD的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=(x2-x-$\frac{1}{a}$)eax(a>0).
(1)求函数y=f(x)的最小值;
(2)若存在唯一实数x0,使得f(x0)+$\frac{3}{a}$=0成立,求实数a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.设函数f(x)=x2eax,a>0.
(1)证明:函数y=f(x)在(0,+∞)上为增函数;
(2)若方程f(x)-1=0有且只有两个不同的实数根,求实数a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知数列{bn}满足bn=|$\frac{{a}_{n}+2}{{a}_{n}-1}$|,其中a1=2,an+1=$\frac{2}{{a}_{n}+1}$.
(1)求b1,b2,b3,并猜想bn的表达式(不必写出证明过程);
(2)由(1)写出数列{bn}的前n项和Sn,并用数学归纳法证明.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知z1=1-i,z2=2+2i.
(1)求z1•z2
(2)若$\frac{1}{z}$=$\frac{1}{{z}_{1}}$+$\frac{1}{{z}_{2}}$,求z.

查看答案和解析>>

科目: 来源: 题型:填空题

7.复数z=(1+i)+(-2+2i)在复平面内对应的点位于第二象限.

查看答案和解析>>

同步练习册答案