相关习题
 0  238543  238551  238557  238561  238567  238569  238573  238579  238581  238587  238593  238597  238599  238603  238609  238611  238617  238621  238623  238627  238629  238633  238635  238637  238638  238639  238641  238642  238643  238645  238647  238651  238653  238657  238659  238663  238669  238671  238677  238681  238683  238687  238693  238699  238701  238707  238711  238713  238719  238723  238729  238737  266669 

科目: 来源: 题型:解答题

8.在△ABC中,$\overrightarrow{BD}$=m$\overrightarrow{BC}$(0<m<1),AC=3,AD=$\sqrt{7}$,C=$\frac{π}{3}$.
(Ⅰ)求△ACD的面积;
(Ⅱ)若cosB=$\frac{\sqrt{15}}{4}$,求AB的长度以及∠BAC的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

7.设x∈R,向量$\overrightarrow a=(x,1)$,$\overrightarrow b=(1,-2)$,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$|{\overrightarrow a+2\overrightarrow b}|$=5.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数$f(x)=(\frac{x^2}{2}-kx)lnx+\frac{x^2}{4}$.
(Ⅰ)若f(x)在定义域内单调递增,求实数k的值;
(Ⅱ)若f(x)的极小值大于0,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,E是边长为2的正方形ABCD的AB边的中点,将△AED与△BEC分别沿ED、EC折起,使得点A与点B重合,记为点P,得到三棱锥P-CDE.
(Ⅰ)求证:平面PED⊥平面PCD;
(Ⅱ)求点P到平面CDE的距离.

查看答案和解析>>

科目: 来源: 题型:填空题

4.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦点向圆x2+y2=a2作一条切线,若该切线与双曲线的两条渐进线分别相交于第一、二象限,且被双曲线的两条渐进线截得的线段长为$\sqrt{3}a$,则该双曲线的离心率为2.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知函数$f(x)=lg(\sqrt{1+4{x^2}}+2x)+2$,则$f(ln2)+f(ln\frac{1}{2})$=(  )
A.4B.2C.1D.0

查看答案和解析>>

科目: 来源: 题型:解答题

2.在△ABC中,a,b,c分别是角A,B,C所对的边,且3cosBcosC+1=3sinBsinC+cos2A.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积S=5$\sqrt{3}$,b=5,求sinBsinC的值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知tanα=-$\frac{1}{3}$,cosβ=$\frac{\sqrt{5}}{5}$,β∈(0,$\frac{π}{2}$),则tan(α+β)=1.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)+1,-1≤x<k}\\{{x}^{3}-3x+2,k≤x≤a}\end{array}\right.$,若存在k使得函数f(x)的值域为[0,2],则实数a的取值范围是(  )
A.[$\frac{1}{2}$,$\sqrt{3}$]B.[1,$\sqrt{3}$]C.(-1,$\sqrt{3}$]D.(-1,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知$tan({α+\frac{π}{4}})=\frac{3}{4}$,则${cos^2}({\frac{π}{4}-α})$=(  )
A.$\frac{7}{25}$B.$\frac{9}{25}$C.$\frac{16}{25}$D.$\frac{24}{25}$

查看答案和解析>>

同步练习册答案