相关习题
 0  238613  238621  238627  238631  238637  238639  238643  238649  238651  238657  238663  238667  238669  238673  238679  238681  238687  238691  238693  238697  238699  238703  238705  238707  238708  238709  238711  238712  238713  238715  238717  238721  238723  238727  238729  238733  238739  238741  238747  238751  238753  238757  238763  238769  238771  238777  238781  238783  238789  238793  238799  238807  266669 

科目: 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{20}{3}$B.$\frac{16}{3}$C.4D.7

查看答案和解析>>

科目: 来源: 题型:解答题

11.脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取100个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第i个农户的年收入xi(万元),年积蓄yi(万元),经过数据处理得$\sum_{i=1}^{100}{x_i}=500,\sum_{i=1}^{100}{y_i}=100,\sum_{i=1}^{100}{{x_i}{y_i}=1000,}\sum_{i=1}^{100}{x_i^2}=3750$.
(Ⅰ)已知家庭的年结余y对年收入x具有线性相关关系,求线性回归方程;
(Ⅱ)若该地区的农户年积蓄在5万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?
附:在$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline x,\overline y$为样本平均值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图ABCD为矩形,CDFE为梯形,CE⊥平面ABCD,O为BD的中点,AB=2EF
(Ⅰ)求证:OE∥平面ADF;
(Ⅱ)若ABCD为正方形,求证:平面ACE⊥平面BDF.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知定义域为R的函数$f(x)=\frac{{n-{2^x}}}{{{2^{x+1}}+m}}$是奇函数.
(Ⅰ)求m,n的值;
(Ⅱ)当$x∈[{\frac{1}{2},3}]$时,f(kx2)+f(2x-1)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

8.计算2sin390°-tan(-45°)+5cos360°=7.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{a}$-$\frac{1}{x}$ (a>0,x>0).
(1)用定义法证明:f(x)在(0,+∞)上是增函数;
(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;
(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示:
  甲 乙 原料限额
 A(吨) 3 2 12
 B(吨) 1 2 8
(1)设该企业每天生产甲、乙两种产品分别为x,y吨,试写出关于的线性约束条件并画出可行域;
(2)如果生产1吨甲、乙产品可获利润分别为3万元、4万元,试求该企业每天可获得的最大利润.

查看答案和解析>>

科目: 来源: 题型:选择题

5.某算法的程序框图如图所示,若输出的y=$\frac{{\sqrt{2}}}{2}$,则输入的x的值可能为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.具有性质:f($\frac{1}{x}$)=-f(x)的函数,我们称为满足“倒负”变换的函数.给出下列函数:
①y=ln$\frac{1-x}{1+x}$;②y=$\frac{{1-{x^2}}}{{1+{x^2}}}$;③y=$\left\{{\begin{array}{l}{x,0<x<1}\\{0,x=1}\\{-\frac{1}{x},x>1}\end{array}}$
其中满足“倒负”变换的函数是(  )
A.①②B.①③C.②③D.

查看答案和解析>>

科目: 来源: 题型:填空题

3.若曲线$y=\sqrt{1-{x^2}}$和直线y=k(x-1)+1有两个公共点,则实数k的取值范围是$({0,\frac{1}{2}}]$.

查看答案和解析>>

同步练习册答案