相关习题
 0  238702  238710  238716  238720  238726  238728  238732  238738  238740  238746  238752  238756  238758  238762  238768  238770  238776  238780  238782  238786  238788  238792  238794  238796  238797  238798  238800  238801  238802  238804  238806  238810  238812  238816  238818  238822  238828  238830  238836  238840  238842  238846  238852  238858  238860  238866  238870  238872  238878  238882  238888  238896  266669 

科目: 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),A,B为双曲线的左右顶点,若点M在双曲线上,且满足△ABM为一个顶角为120°的等腰三角形,则双曲线的渐近线方程是(  )
A.y=±xB.y=±$\sqrt{2}$xC.y=±2xD.y=±$\frac{\sqrt{2}}{2}$x

查看答案和解析>>

科目: 来源: 题型:解答题

14.设函数f(x)=-$\frac{1}{3}$x3+ax2+bx+ab,x∈R,其中a,b∈R.
(Ⅰ)若函数f(x)在x=1处有极小值-$\frac{22}{3}$,求a.b的值;
(Ⅱ)若|a|>1,设g(x)=|f′(x)|,求证:当x∈[-1,1]时,g(x)max>2;
(Ⅲ)若a>1,b<1-2a,对于给定x1,x2∈(-∞,1),x1<x2,α=mx1+(1-m)x2,β=(1-m)x1+mx2,其中m∈R,α<1,β<1,若|f(α)-f(β)|<|f(x1)-f(x2)|,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

13.如图,在长方形OABC内任取一点P,则点P落在阴影部分内的概率为1-$\frac{3}{2e}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,则目标函数z=x+2y+4的最小值为(  )
A.29B.25C.11D.9

查看答案和解析>>

科目: 来源: 题型:选择题

11.若数列{an},{bn}的通项公式分别为an=(-1)n+2016•a,bn=2+$\frac{{{{(-1)}^{n+2017}}}}{n}$,且an<bn,对任意n∈N*恒成立,则实数a的取值范围是(  )
A.$[-1,\frac{1}{2})$B.[-1,1)C.[-2,1)D.$[-2,\frac{3}{2})$

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知a=${∫}_{-1}^{1}$(1+$\sqrt{1-{x}^{2}}$)dx,则((a-$\frac{π}{2}$)x-$\frac{3}{x}$)9展开式中的各项系数和为-1.

查看答案和解析>>

科目: 来源: 题型:解答题

9.小明参与某商场家电会场举行的一次智力问答,其中问题随机抽取,若小明回答问题正碘的概率为$\frac{3}{4}$,且正确加10分;回答问题错误的概率为$\frac{1}{4}$,且错误扣10分;记小明回答完第n个问题的总得分为Sn
(1)求S3=10的概率;
(2)记ξ=|S4|,求ξ的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:选择题

8.设a=x,b=sinx,c=tanx,0<x<$\frac{π}{2}$,则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目: 来源: 题型:选择题

7.函数$y=tan(\frac{π}{4}-x)$的定义域是(  )
A.{x|x≠$\frac{π}{4}$,k∈Z x∈R}B.{x|x≠kπ$+\frac{π}{4}$,k∈Z,x∈R}
C.{x|x≠$-\frac{π}{4}$,k∈Z x∈R}D.{x|x≠kπ$+\frac{3}{4}π$,k∈Z,x∈R}

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知函数$f(x)=2sin(ωx+ϕ)+1,(ω>0,|ϕ|≤\frac{π}{2})$,其图象与直线y=-1相邻两个交点的距离为π,若f(x)>1对任意$x∈(-\frac{π}{12},\frac{π}{3})$恒成立,则ϕ的取值范围是( $\frac{π}{6}$,$\frac{π}{3}$).

查看答案和解析>>

同步练习册答案