相关习题
 0  238711  238719  238725  238729  238735  238737  238741  238747  238749  238755  238761  238765  238767  238771  238777  238779  238785  238789  238791  238795  238797  238801  238803  238805  238806  238807  238809  238810  238811  238813  238815  238819  238821  238825  238827  238831  238837  238839  238845  238849  238851  238855  238861  238867  238869  238875  238879  238881  238887  238891  238897  238905  266669 

科目: 来源: 题型:解答题

10.已知数列{an}{满足a1=1,an+1-an=2,等比数列{bn}满足b1=a1,b4=8
(I)求数列{an},{bn}的通项公式;
(II)设cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:填空题

9.点F为抛物线y2=2px的焦点,点P在y轴上,PF交抛物线于点Q,且|PQ|=|QF|=1,则p等于$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数$f(x)=-\frac{1}{3}{x^3}+b{x^2}+cx+bc$在x=1处有极值$-\frac{4}{3}$,求b,c的值.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知$cos({α+β})=\frac{2}{3},cos({α-β})=\frac{1}{3}$,则tanα•tanβ=-$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

6.若扇形的中心角α=60°,扇形半径R=12cm,则阴影表示的弓形面积为24π-36$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.如果直线 l 经过两直线2x-3y+1=0和3x-y-2=0的交点,且与直线y=x垂直,则原点到直线 l 的距离是(  )
A.2B.1C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知f(x)是定义在R上的函数,f′(x)是其导函数,若满足f′(-x)=f′(x),f(x+2)=-f(x),则函数y=f(x)的图象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

3.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
喜爱打篮球不喜爱打篮球合计
男生20525               
女生101525
合计302050
已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目: 来源: 题型:选择题

2.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如图的2×2列联表.
喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计302050
则至少有(  )的把握认为喜爱打篮球与性别有关.
附参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2>k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.78910.828
A.95%B.99%C.99.5%D.99.9%

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知平面内两点A(4,0),B(0,2)
(1)求过P(2,3)点且与直线AB平行的直线l的方程;
(2)设O(0,0),求△OAB外接圆方程.

查看答案和解析>>

同步练习册答案