相关习题
 0  238734  238742  238748  238752  238758  238760  238764  238770  238772  238778  238784  238788  238790  238794  238800  238802  238808  238812  238814  238818  238820  238824  238826  238828  238829  238830  238832  238833  238834  238836  238838  238842  238844  238848  238850  238854  238860  238862  238868  238872  238874  238878  238884  238890  238892  238898  238902  238904  238910  238914  238920  238928  266669 

科目: 来源: 题型:解答题

10.已知函数f(x) 满足f(2x)=x+1.
(1)求函数f(x) 的解析式;
(2)求函数y=[f(x)]2+f(2x) 的最小值;
(3)设函数g(x) 是函数y=f(x)-1 的反函数,函数h(x)=f(x)+g(x).若方程h(x)-a=0 在区间(1,2)上有根,求实数a 的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

9.函数f(x)=|($\frac{1}{4}$)x-1|-2a有两个零点,则a的取值范围是(  )
A.(0,1)B.(0,1)∪(1,+∞)C.(1,+∞)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知等差数列{an}满足:a1=2,且a1,a3,a13成等比数列.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)记Sn为数列{an}的前项n和,是否存在正整数n,使得Sn>40n+600?若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

7.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数$f(x)=\left\{\begin{array}{l}1,x为有理数\\ 0,x为无理数\end{array}\right.$称为狄利克雷函数,关于函数f(x)有以下四个命题:
①f(f(x))=1;      
②函数f(x)是奇函数
③任意一个非零无理数T,f(x+T)=f(x)对任意x∈R恒成立;
④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.
其中真命题的序号为①④.(写出所有正确命题的序号).

查看答案和解析>>

科目: 来源: 题型:填空题

6.定积分${∫}_{0}^{1}$sinxdx=1-cos1.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x}+3,x≥0}\\{ax+b,x<0}\end{array}\right.$,满足条件:对于任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x1)=f(x2).当$f({\sqrt{3}a})=f({4b})$成立时,则实数a+b=(  )
A.$-\sqrt{2}+3$B.5C.$\sqrt{2}+3$D.1

查看答案和解析>>

科目: 来源: 题型:填空题

4.若f(x)在U(x0,δ)有定义,且在x0点可导,则$\underset{lim}{h→0}\frac{f({x}_{0}+2h)-f({x}_{0}-h)}{h}$=3f′(x0).

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,AD∥BC,且BC=2,AD=CD=PC=1,AD⊥CD,PC⊥平面ABCD,点E在棱PD上,且PE=2ED.
(1)求证:PB∥平面AEC;
(2)求直线PD与面PAB所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$sin(π-2x)-2cos2x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[$\frac{π}{4}$,$\frac{3π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+1,x<0}\\{f(x-1),x≥0}\end{array}\right.$,则y=f(x)-x的零点有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案