相关习题
 0  238841  238849  238855  238859  238865  238867  238871  238877  238879  238885  238891  238895  238897  238901  238907  238909  238915  238919  238921  238925  238927  238931  238933  238935  238936  238937  238939  238940  238941  238943  238945  238949  238951  238955  238957  238961  238967  238969  238975  238979  238981  238985  238991  238997  238999  239005  239009  239011  239017  239021  239027  239035  266669 

科目: 来源: 题型:选择题

8.若椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短轴长等于焦距,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知集合A={x|3x+1<0},B={x|6x2-x-1≤0},则A∩B=(  )
A.$[-\frac{1}{3},\frac{1}{2}]$B.C.$(-∞,\frac{1}{3})$D.$\{\frac{1}{3}\}$

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数$f(x)=alnx-\frac{1}{2}{x^2}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数g(x)=f(x)+4x存在极小值点x0,且$g({x_0})-\frac{1}{2}x_0^2+2a>0$,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知定点F(0,1),定直线l:y=-1,动圆M过点F,且与直线l相切.
(Ⅰ)求动圆M的圆心轨迹C的方程;
(Ⅱ)过点F的直线与曲线C相交于A,B两点,分别过点A,B作曲线C的切线l1,l2,两条切线相交于点P,求△PAB外接圆面积的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,ABCD是边长为a的正方形,EB⊥平面ABCD,FD⊥平面ABCD,$EB=2FD=\sqrt{2}a$.
(Ⅰ)求证:EF⊥AC;
(Ⅱ)求三棱锥E-FAC的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

3.某中学为了解高中入学新生的身高情况,从高一年级学生中按分层抽样共抽取了50名学生的身高数据,分组统计后得到了这50名学生身高的频数分布表:
 身高(cm)分组[145,155)[155,165)[165,175)[175,185]
 男生频数 1 5 12 4
 女生频数 7 15 4 2
(Ⅰ)在答题卡上作出这50名学生身高的频率分布直方图;
(Ⅱ)估计这50名学生身高的方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)现从身高在[175,185]这6名学生中随机抽取3名,求至少抽到1名女生的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

2.△ABC的内角A,B,C的对边分别为a,b,c,已知bcosC+bsinC=a.
(Ⅰ)求角B的大小;
(Ⅱ)若BC边上的高等于$\frac{1}{4}a$,求cosA的值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知函数$f(x)=\left\{\begin{array}{l}{x^3}\\-{x^3}\end{array}\right.\begin{array}{l}x≥0,\\ x<0,\end{array}$,若f(3a-1)≥8f(a),则实数a的取值范围为$({-∞,\frac{1}{5}}]∪[{1,+∞})$.

查看答案和解析>>

科目: 来源: 题型:填空题

20.在各项都为正数的等比数列{an}中,已知a1=2,$a_{n+2}^2+4a_n^2=4a_{n+1}^2$,则数列{an}的通项公式an=${2}^{\frac{n+1}{2}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{2}=1$(a>0)的离心率为2,则a的值为$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

同步练习册答案