相关习题
 0  238869  238877  238883  238887  238893  238895  238899  238905  238907  238913  238919  238923  238925  238929  238935  238937  238943  238947  238949  238953  238955  238959  238961  238963  238964  238965  238967  238968  238969  238971  238973  238977  238979  238983  238985  238989  238995  238997  239003  239007  239009  239013  239019  239025  239027  239033  239037  239039  239045  239049  239055  239063  266669 

科目: 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+bx+5,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.
(1)求a,b的值;
(2)求y=f(x)在R上的单调区间
(3)求y=f(x)在[-3,1]上的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.(1)(用分析法证明)$\sqrt{3}+\sqrt{8}<2+\sqrt{7}$
(2)若a>0,b>0,c>0,且a+b+c=1求证:$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}≥9$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知sinα-2cosα=0,求
(1)$\frac{2sinα+cosα}{sinα-3cosα}$;
(2)2sinαcosα.

查看答案和解析>>

科目: 来源: 题型:填空题

13.在平面直角坐标系中,方程x2+y2=1所对应的图象经过伸缩变换$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后的图象所对应的方程为$\frac{x^2}{25}+\frac{y^2}{9}=1$.

查看答案和解析>>

科目: 来源: 题型:填空题

12.用反证法证明命题:“若a,b∈R,且a2+|b|=0,则a,b全为0”时,应假设为a,b中至少有一个不为0.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知方程t2+4at+3a+1=0(a>1)的两根均tanα,tanβ,其中α,β∈(-$\frac{π}{2},\frac{π}{2}$)且x=α+β
(1)求tanx的值;
(2)求$\frac{cos2x}{\sqrt{2}cos(\frac{π}{4}+x)sinx}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在平面直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}x=rcosθ\\ y=rsinθ\end{array}$(θ为参数,0<r<4),曲线C2:$\left\{\begin{array}{l}x=2+2\sqrt{2}cosθ\\ y=2+2\sqrt{2}sinθ\end{array}$(θ为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,射线$θ=α(0<α<\frac{π}{2})$与曲线C1交于N点,与曲线C2交于O,P两点,且|PN|最大值为2$\sqrt{2}$.
(1)将曲线C1与曲线C2化成极坐标方程,并求r的值;
(2)射线θ=α+$\frac{π}{4}$与曲线C1交于Q点,与曲线C2交于O,M两点,求四边形MPNQ面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知tanα=-2
(1)求$\frac{3}{2}$sin2α-2cos2α+3的值;
(2)求$\frac{sin(4π-α)cos(3π+α)cos(\frac{π}{2}+α)cos(\frac{5}{2}π-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{13}{2}π+α)}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,且f($\frac{π}{4}$)=0,将函数f(x)图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移$\frac{π}{2}$个单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式;
(2)是否存在x0∈($\frac{π}{6}$,$\frac{π}{4}$),使得f(x0),g(x0),f($\frac{π}{6}$)按照某种顺序成等差数列?若存在,请求出x0的值,若不存在,说明理由;
(3)求实数a,使得F(x)=f(x)+ag(x)在(0,2π)内恰有3个零点.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知{an}满足an+1=an+2n,且a1=33,则$\frac{{a}_{n}}{n}$的最小值为$\frac{21}{2}$.

查看答案和解析>>

同步练习册答案