相关习题
 0  238885  238893  238899  238903  238909  238911  238915  238921  238923  238929  238935  238939  238941  238945  238951  238953  238959  238963  238965  238969  238971  238975  238977  238979  238980  238981  238983  238984  238985  238987  238989  238993  238995  238999  239001  239005  239011  239013  239019  239023  239025  239029  239035  239041  239043  239049  239053  239055  239061  239065  239071  239079  266669 

科目: 来源: 题型:解答题

17.若不等式|b+2|-|b-2|≤a≤|b+2|+|2-b|对于任意b∈R都成立.
(1)求a的值;
(2)设x>y>0,求证:$2x-2y+\frac{1}{{{x^2}-2xy+{y^2}}}≥a-1$.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点,两条渐近线分别为l1,l2,经过右焦点F2垂直于l1的直线分别交l1,l2于A,B两点,若|OA|+|OB|=2|AB|,且F2在线段AB上,则双曲线的渐近线斜率为(  )
A.$±\frac{{\sqrt{5}}}{2}$B.±2C.$±\sqrt{2}$D.$±\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=3Sn+2,n∈N.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{8n}{{a}_{n+1}-{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:选择题

14.关于x的方程$\sqrt{3}sin2x+cos2x=k+1$在$[0,\frac{π}{2}]$内有实数根,则k的取值范是(  )
A.(-3,1)B.(0,2)C.[0,1]D.[-2,1]

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求f(x)的最小正周期; 
(2)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.
(3)求f(x)的单调区间;
(4)求f(x)的对称轴和对称中心.

查看答案和解析>>

科目: 来源: 题型:解答题

12.某同学用“五点法”画函数$f(x)=2sin(\frac{1}{3}x-\frac{π}{6})$的图象,先列表,并填写了一些数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{2}$
$\frac{7π}{2}$
$\frac{13π}{2}$
f(x)020-20
(1)请将表格填写完整,并画出函数f(x)在一个周期内的简图;

(2)写出如何由f(x)=sinx的图象变化得到$f(x)=2sin(\frac{1}{3}x-\frac{π}{6})$的图象,要求用箭头的形式写出变化的三个步骤.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知$sinα=\frac{4}{5},α∈({\frac{π}{2},π}),cosβ=-\frac{5}{13},β是第三象限角$.
(1)求sin(α-β)的值
(2)求tan(α+β)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知数列{an}的各项为正数,其前n项和为Sn满足${S_n}={(\frac{{{a_n}+1}}{2})^2}$,设bn=10-an(n∈N).
(1)求证:数列{an}是等差数列,并求{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,求Tn的最大值.
(3)设数列{bn}的通项公式为${b_n}=\frac{a_n}{{{a_n}+t}}$,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

9.在△ABC中,内角A,B,C所对应的边分别为a,b,c,且asin2B+bsinA=0,若△ABC的面积S=$\sqrt{3}$b,则△ABC面积的最小值为(  )
A.1B.12$\sqrt{3}$C.8$\sqrt{3}$D.12

查看答案和解析>>

科目: 来源: 题型:选择题

8.函数y=3sinx+$\sqrt{3}$cosx,x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]的值域(  )
A..[-3,3]B.[-2$\sqrt{3}$,2$\sqrt{3}$]C.[0,2$\sqrt{3}$]D.[-$\frac{1}{2}$,2$\sqrt{3}$]

查看答案和解析>>

同步练习册答案