相关习题
 0  238914  238922  238928  238932  238938  238940  238944  238950  238952  238958  238964  238968  238970  238974  238980  238982  238988  238992  238994  238998  239000  239004  239006  239008  239009  239010  239012  239013  239014  239016  239018  239022  239024  239028  239030  239034  239040  239042  239048  239052  239054  239058  239064  239070  239072  239078  239082  239084  239090  239094  239100  239108  266669 

科目: 来源: 题型:选择题

8.已知数列{an}满足an+1=an-an-1(n≥2,且n∈N),a1=a,a2=b,记Sn=a1+a2+…+an,则下列选项中正确的是(  )
A.a100=-a,S100=2b-aB.a100=-b,S100=2b-a
C.a100=-b,S100=b-aD.a100=-a,S100=b-a

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知sin θ、cos θ是关于x的方程x2-ax+a=0的两个根(a∈R).
(1)求sin3θ+cos3θ的值;
(2)求tan θ+$\frac{1}{tanθ}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=4x+ax2-$\frac{2}{3}$x3(x∈R)
(1)当a=1时,求函数的单调区间;
(2)若函数在区间[1,+∞)上是减函数,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

5.函数f(x)=x3-3ax2+(2a+1)x既有极小值又有极大值,则a的取值范围为(  )
A.-$\frac{1}{3}$<a<1B.a>1或a$<-\frac{1}{3}$C.-1$<a<\frac{1}{3}$D.a$>\frac{1}{3}$或a<-1

查看答案和解析>>

科目: 来源: 题型:选择题

4.x∈[0,2π],$y=\sqrt{tanx}+\sqrt{-cosx}$定义域为(  )
A.$x∈[0,\frac{π}{2})$B.$(\frac{π}{2},π]$C.$[π,\frac{3π}{2})$D.$(\frac{3π}{2},2π]$

查看答案和解析>>

科目: 来源: 题型:选择题

3.y=5-sin2x-4cosx最小值为(  )
A.-2B.0C.1D.-1

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知{an}是等差数列,其前n项和为Sn,若a6=S3=12,则数列{an}的通项 an=2n.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知等差数列{an},{bn}的前n项和分别为Sn,Tn,且$\frac{S_n}{T_n}=\frac{7n+2}{n+3}$,则 $\frac{a_4}{b_4}$=(  )
A.$\frac{51}{10}$B.$\frac{30}{7}$C.$\frac{65}{12}$D.$\frac{23}{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过C上一点$({2\sqrt{2},\sqrt{2}})$的切线l的方程为x+2y-4$\sqrt{2}$=0.
(1)求椭圆C的方程.
(2)设过点M(0,1)且斜率不为0的直线交椭圆于A,B两点,试问y轴上是否存在点P,使得$\overrightarrow{PM}=λ(\frac{{\overrightarrow{PA}}}{{|{\overrightarrow{PA}}|}}+\frac{{\overrightarrow{PB}}}{{|{\overrightarrow{PB}}|}})$?若存在,求出点P的坐标;若不存在说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知$f(α)=\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}-α)tan(π+α)cos(\frac{π}{2}+α)}}{sin(2π-α)tan(-α-π)sin(-α-π)}$.
(1)化简f(α);
(2)若$α=-\frac{31π}{3}$,求f(α)的值.

查看答案和解析>>

同步练习册答案