相关习题
 0  238926  238934  238940  238944  238950  238952  238956  238962  238964  238970  238976  238980  238982  238986  238992  238994  239000  239004  239006  239010  239012  239016  239018  239020  239021  239022  239024  239025  239026  239028  239030  239034  239036  239040  239042  239046  239052  239054  239060  239064  239066  239070  239076  239082  239084  239090  239094  239096  239102  239106  239112  239120  266669 

科目: 来源: 题型:解答题

8.已知函数$f(x)=xlnx-x+\frac{1}{2}{x^2}-\frac{1}{3}a{x^3}$,令f(x)的导函数为y=g(x).
(I)判定y=g(x)在其定义域内的单调性;
(II)若曲线y=f(x)上存在两条倾斜角为锐角且互相平行的切线,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.若椭圆E1:$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1$与椭圆E2:$\frac{x^2}{a_2^2}+\frac{y^2}{b_2^2}=1$满足$\frac{a_1}{a_2}=\frac{b_1}{b_2}=m({m>0})$,则称这两个椭圆相似,m叫相似比.若椭圆M1与椭圆${M_2}:{x^2}+2{y^2}=1$相似且过$({1,\frac{{\sqrt{2}}}{2}})$点.
(I)求椭圆M1的标准方程;
(II)过点P(-2,0)作斜率不为零的直线l与椭圆M1交于不同两点A、B,F为椭圆M1的右焦点,直线AF、BF分别交椭圆M1于点G、H,设$\overrightarrow{AF}={λ_1}\overrightarrow{FG}$,$\overrightarrow{BF}={λ_2}\overrightarrow{FH}({{λ_1}、{λ_2}∈R})$,求λ12的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知四棱锥S-ABCD中,底面是直角梯形,AB=2,BC=CD=1,BC⊥AB,侧面SAD是以∠ASD为直角的等腰三角形,且侧面SAD与底面ABCD垂直.
(I)求证:SA⊥BD;
(II)若点E为侧棱SB上的一动点,问点E在何位置时,二面角E-AD-S的余弦值为$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.“五一”假期期间,某餐厅对选择A、B、C三种套餐的顾客进行优惠.对选择A、B套餐的顾客都优惠10元,对选择C套餐的顾客优惠20元.根据以往“五一”假期期间100名顾客对选择A、B、C三种套餐的情况得到下表:
选择套餐种类ABC
选择每种套餐的人数502525
将频率视为概率.
(I)若有甲、乙、丙三位顾客选择某种套餐,求三位顾客选择的套餐至少有两样不同的概率;
(II)若用随机变量X表示两位顾客所得优惠金额的综合,求X的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:解答题

4.在△ABC中,角A、B、C的对边分别为a、b、c,且$cos({A-\frac{π}{3}})=2cosA$.
(1)若b=2,△ABC面积为$3\sqrt{3}$,求a;
(2)若$cos2C=1-\frac{a^2}{{6{b^2}}}$,求角B的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

3.高为$\sqrt{2}$的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均同一球面上,底面ABCD的中心为O1,球心O到底面ABCD的距离为$\frac{{\sqrt{2}}}{2}$,则异面直线SO1与AB所成角的余弦值的范围为[0,$\frac{\sqrt{10}}{10}$].

查看答案和解析>>

科目: 来源: 题型:填空题

2.二项式${({\frac{1}{x}-1})^5}$的展开式中,系数最大的项为$\frac{10}{{x}^{3}}$.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知命题p:将函数$f(x)=2sin({2x+\frac{π}{3}})$的图象向右平移$\frac{π}{4}$个单位,得到函数g(x)的图象,则函数g(x)在区间$[{-\frac{π}{3},0}]$上单调递增;命题q:定义在R上的函数y=f(x)满足f(-x)=f(3+x),则函数图象关于直线$x=\frac{3}{2}$对称,则正确的命题是(  )
A.p∧qB.p∧(?q)C.(?p)∧(?q)D.(?p)∧q

查看答案和解析>>

科目: 来源: 题型:选择题

20.下列函数中不是奇函数的是(  )
A.$y=\frac{{({{a^x}+1})x}}{{{a^x}-1}}({a>0,a≠1})$B.$y=\frac{{{a^x}-{a^{-x}}}}{2}({a>0,a≠1})$
C.$y=\left\{\begin{array}{l}1,({x>0})\\-1,({x<0})\end{array}\right.$D.$y={log_a}\frac{1+x}{1-x}({a>0,a≠1})$

查看答案和解析>>

科目: 来源: 题型:选择题

19.若$z=\frac{3-i}{1+i}$(其中i是虚数单位),则|z+i|=(  )
A.$\sqrt{5}$B.$\sqrt{2}$C.5D.2

查看答案和解析>>

同步练习册答案