相关习题
 0  238932  238940  238946  238950  238956  238958  238962  238968  238970  238976  238982  238986  238988  238992  238998  239000  239006  239010  239012  239016  239018  239022  239024  239026  239027  239028  239030  239031  239032  239034  239036  239040  239042  239046  239048  239052  239058  239060  239066  239070  239072  239076  239082  239088  239090  239096  239100  239102  239108  239112  239118  239126  266669 

科目: 来源: 题型:解答题

8.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-4t+\frac{11}{3}}\\{y=3t-1}\end{array}\right.$(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆N的方程为ρ2-6ρsinθ=-8
(1)求圆N的圆心N的极坐标;
(2)判断直线l与圆N的位置关系.

查看答案和解析>>

科目: 来源: 题型:选择题

7.设x.y满足约束条件$\left\{\begin{array}{l}{2x+y-3≤0}\\{2x-2y-1≤0}\\{x-a≥0}\end{array}\right.$,若$\frac{x-y}{x+y}$的最大值为2,则a的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{5}{9}$

查看答案和解析>>

科目: 来源: 题型:解答题

6.设函数f(x)=2lnx+x2-2ax(a>0).
(Ⅰ)若函数f(x)在区间[1,2]上的最小值为0,求实数a的值;
(Ⅱ)若x1,x2(x1<x2)是函数f(x)的两个极值点,且f(x1)-f(x2)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

5.现有3个命题:
P1:函数f(x)=lgx-|x-2|有2个零点.
P2:面值为3分和5分的邮票可支付任何n(n>7,n∈N)分的邮资.
P3:若a+b=c+d=2,ac+bd>4,则a、b、c、d中至少有1个为负数.
那么,这3个命题中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:解答题

4.设函数f(x)=-x3+x-1.
(Ⅰ)若y=-2x+b为f(x)的一条切线,求b值.
(Ⅱ)若f(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

3.下列说法正确的有②③④.(填正确命题的序号)
①用R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$刻画回归效果,当R2越大时,模型的拟合效果越差;反之,则越好;
②可导函数f(x)在x=x0处取得极值,则f′(x0)=0;
③归纳推理是由特殊到一般的推理,而演绎推理是由一般到特殊的推理;
④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”.

查看答案和解析>>

科目: 来源: 题型:填空题

2.曲线${y^2}=4\sqrt{2}x$上一点M到它的焦点F的距离为$4\sqrt{2}$,O为坐标原点,则△MFO的面积为2$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.若复数z=$\frac{1+i}{1-i}$,$\overline{z}$为z的共轭复数,则($\overline{z}$)2017=-i.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知F为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,l1,l2为C的两条渐近线,点A在l1上,且FA⊥l1,点B在l2上,且FB∥l1,若|FA|=$\frac{4}{5}$|FB|,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$或$\frac{{3\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,a1=1,S2=2,且an-Sn+1,λ+an+1(λ≠0),Sn+2成等差数列,则数列{${2}^{{a}_{n+2}-{a}_{n}}$}的前n项和Tn的表达式为$\frac{{{4^λ}({1-{4^{2nλ}}})}}{{1-{4^{2λ}}}}$.(用含有λ的式子表示)

查看答案和解析>>

同步练习册答案