相关习题
 0  238943  238951  238957  238961  238967  238969  238973  238979  238981  238987  238993  238997  238999  239003  239009  239011  239017  239021  239023  239027  239029  239033  239035  239037  239038  239039  239041  239042  239043  239045  239047  239051  239053  239057  239059  239063  239069  239071  239077  239081  239083  239087  239093  239099  239101  239107  239111  239113  239119  239123  239129  239137  266669 

科目: 来源: 题型:填空题

8.一质点按规律s=2t3运动,则其在时间段[1,2]内的平均速度为14m/s,在t=1时的瞬时速度为6m/s.

查看答案和解析>>

科目: 来源: 题型:填空题

7.如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD•BC,该结论称为射影定理.如图乙,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关是S△ABC2=S△BCO•S△BCD

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知复数z满足(3+4i)z=25,则z对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知a,b∈R,在(ax+$\frac{2b}{x}$)8的展开式中,第二项系数为正,各项系数和为256,则该展开式中的常数项的取值范围是(0,70].

查看答案和解析>>

科目: 来源: 题型:解答题

4.设函数f(x)=sin(2x-$\frac{3π}{4}$)
(1)画出函数y=f(x)在区间[0,π]上的图象.
(2)求函数f(x)=sin(2x-$\frac{3π}{4}$)的周期、对称轴、对称中心,单调区间.

查看答案和解析>>

科目: 来源: 题型:解答题

3.若方程x2+y2+2mx-2y+m2+5m=0表示圆,求:
(1)实数m的取值范围;
(2)圆心坐标和半径.

查看答案和解析>>

科目: 来源: 题型:选择题

2.若MP和OM分别是角α=$\frac{7π}{8}$的正弦线和余弦线,那么下列结论中正确的是(  )
A.MP<OM<0B.OM>0>MPC.OM<MP<0D.MP>0>OM

查看答案和解析>>

科目: 来源: 题型:填空题

1.设A(x1,y1),B(x2,y2)是函数$f(x)=\frac{1}{2}+{log_2}\frac{x}{1-x}$的图象上任意两点,且$\overrightarrow{OM}=\frac{1}{2}({\overrightarrow{OA}+\overrightarrow{OB}})$,已知点M的横坐标为$\frac{1}{2}$,则M点的纵坐标为$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.若两点的坐标是A(3cosα,3sinα,1),B(2cosβ,2sinβ,1),则|AB|的取值范围是(  )
A.[0,5]B.[1,5]C.(0,5)D.[1,25]

查看答案和解析>>

科目: 来源: 题型:解答题

19.如表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费用y(万元)的几组对照数据:
x(年)  3       4     5   6
y(万元)    2.5    3    4  4.5 
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+a
(2)已知工厂技改前该型号设备使用10年的维修费用为9万元.试根据(1)求出的线性回归方程,预测该型号设备技改后使用10年的维修费用比技改前降低多少?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=y-$\stackrel{∧}{b}$x.

查看答案和解析>>

同步练习册答案