相关习题
 0  238979  238987  238993  238997  239003  239005  239009  239015  239017  239023  239029  239033  239035  239039  239045  239047  239053  239057  239059  239063  239065  239069  239071  239073  239074  239075  239077  239078  239079  239081  239083  239087  239089  239093  239095  239099  239105  239107  239113  239117  239119  239123  239129  239135  239137  239143  239147  239149  239155  239159  239165  239173  266669 

科目: 来源: 题型:解答题

3.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=$\frac{4n}{{a}_{n}{a}_{n+1}}$•sin$\frac{{a}_{n}π}{2}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=2Sn-1,则a2017=2017.

查看答案和解析>>

科目: 来源: 题型:填空题

1.设a∈Z,且0<a<13,若532017+a能被13整数,则a=12.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知a,b,c,m,n,p都是实数,且a2+b2+c2=1,m2+n2+p2=1.
(Ⅰ)证明|am+bn+cp|≤1;
(Ⅱ)若abc≠0,证明$\frac{{m}^{4}}{{a}^{2}}$+$\frac{{n}^{4}}{{b}^{2}}$+$\frac{{p}^{4}}{{c}^{2}}$≥1.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知动点M(x,y)满足:$\sqrt{(x+1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+{y}^{2}}$=2$\sqrt{2}$,M的轨迹为曲线E.
(Ⅰ)求E的方程;
(Ⅱ)过点F(1,0)作直线l交曲线E于P,Q两点,交y轴于R点,若$\overrightarrow{RP}$=λ1$\overrightarrow{PF}$,$\overrightarrow{RQ}$=λ2$\overrightarrow{QF}$,求证:λ12为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,已知三棱锥P-ABC,BC⊥AC,BC=AC=2,PA=PB,平面PAB⊥平面ABC,D、E、F分别是AB、PB、PC的中点.
(Ⅰ)证明:PD⊥平面ABC;
(Ⅱ)若M为BC中点,且PM⊥平面EFD,求三棱锥P-ABC的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

17.某校为了解高一学生周末的“阅读时间”,从高一年级中随机调查了100名学生进行调查,获得了每人的周末“阅读时间”(单位:小时),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示.
(Ⅰ)求图中a的值;
(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;
(Ⅲ)在[1,1.5),[1.5,2)这两组中采用分层抽样抽取7人,再从7人中随机抽取2人,求抽取的两人恰好都在一组的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知数列{an}满足a1=2,an+1=2an+2n+1
(Ⅰ)证明数列{$\frac{{a}_{n}}{{2}^{n}}$}是等差数列;
(Ⅱ)求数列{$\frac{{a}_{n}}{n}$}的前n项和.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知实数x,y满足$\left\{\begin{array}{l}{x-y≥-3}\\{2x+y≤3}\\{y≥1}\end{array}\right.$,则z=x+y的最大值为3.

查看答案和解析>>

科目: 来源: 题型:选择题

14.设F为抛物线C:y2=8x,曲线y=$\frac{k}{x}$(k>0)与C交于点A,直线FA恰与曲线y=$\frac{k}{x}$(k>0)相切于点A,直线FA于C的准线交于点B,则$\frac{|FA|}{|BA|}$等于(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案