相关习题
 0  239000  239008  239014  239018  239024  239026  239030  239036  239038  239044  239050  239054  239056  239060  239066  239068  239074  239078  239080  239084  239086  239090  239092  239094  239095  239096  239098  239099  239100  239102  239104  239108  239110  239114  239116  239120  239126  239128  239134  239138  239140  239144  239150  239156  239158  239164  239168  239170  239176  239180  239186  239194  266669 

科目: 来源: 题型:选择题

13.欧拉,瑞士数学家,18世纪数学界最杰出的人物之一,是有史以来最多遗产的数学家,数学史上称十八世纪为“欧拉时代”.1735年,他提出了欧拉公式:e=cosθ+isinθ.被后人称为“最引人注目的数学公式”.若$θ=\frac{2π}{3}$,则复数z=e对应复平面内的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知集合A={x|-1<x<2},$B=\left\{{x|y={x^{-\frac{1}{2}}}}\right\}$,则A∩B=(  )
A.(0,+∞)B.(-1,2)C.(0,2)D.(2,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=ax2-(a+2)x+lnx+2,其中a≤2.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若不等式f(x)≥0在x∈[1,2]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,一个顶点在抛物线x2=4y的准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为坐标原点,M,N为椭圆上的两个不同的动点,直线OM,ON的斜率分别为k1和k2,若k1k2=-$\frac{1}{4}$,求△MON的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB=2,AD=$\sqrt{2}$,PD⊥平面ABCD,E,F分别是CD,PB的中点.
求证:(Ⅰ)CF∥平面PAE;
(Ⅱ)平面PAE⊥平面PBD.

查看答案和解析>>

科目: 来源: 题型:解答题

8.为加强对旅游景区的规范化管理,确保旅游业健康持续发展,某市旅游局2016年国庆节期间,在某旅游景点开展了景区服务质量评分问卷调查,调查情况统计如表:
分数分组游客人数
[0,60)100
[60,85)200
[85,100]300
总计600
该旅游局规定,将游客的评分分为三个等级,评分在[0,60)的视为差评,在[60,85)的视为中评,在[85,100)的视为好评,现从上述600名游客中,依据游客评价的等级进行分层抽样,选取了6名游客,以备座谈采访之用.
(Ⅰ)若从上述6名游客中,随机选取一名游客进行采访,求该游客的评分不低于60分的概率;
(Ⅱ)若从上述6名游客中,随机选取两名游客进行座谈,求这两名游客的评价全为“好评”的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且acosB+bcosA=2ccosC.
(Ⅰ)求角C;
(Ⅱ)若c=2$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.由曲线y=xa(a为常数,且a>0),直线y=0和x=1围成的平面图形的面积记为${∫}_{0}^{1}$xadx,已知${{∫}_{0}^{1}x}^{\frac{1}{2}}$dx=$\frac{2}{3}$,${∫}_{0}^{1}xdx$=$\frac{1}{2}$,${∫}_{0}^{1}$${x}^{\frac{3}{2}}$dx=$\frac{2}{5}$,${∫}_{0}^{1}$x2dx=$\frac{1}{3}$,${∫}_{0}^{1}$${x}^{\frac{5}{2}}$dx=$\frac{2}{7}$,${∫}_{0}^{1}$x3dx=$\frac{1}{4}$,…,照此规律,当a∈(0,+∞)时,${∫}_{0}^{1}$xndx=$\frac{2}{2a+2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知函数f(x)=2sin(2x+$\frac{2π}{3}$),若将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到函数g(x)的图象,则函数g(x)的解析式是g(x)=2sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1和F2,以F1F2为直径的圆与双曲线的一个交点为P,若|PF1|=a,则该双曲线的离心率为(  )
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{10}}{5}$C.$\sqrt{10}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案