相关习题
 0  239005  239013  239019  239023  239029  239031  239035  239041  239043  239049  239055  239059  239061  239065  239071  239073  239079  239083  239085  239089  239091  239095  239097  239099  239100  239101  239103  239104  239105  239107  239109  239113  239115  239119  239121  239125  239131  239133  239139  239143  239145  239149  239155  239161  239163  239169  239173  239175  239181  239185  239191  239199  266669 

科目: 来源: 题型:选择题

15.已知共面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=3,$\overrightarrow{b}$+$\overrightarrow{c}$=2$\overrightarrow{a}$,且|$\overrightarrow{b}$|=|$\overrightarrow{b}$-$\overrightarrow{c}$|.若对每一个确定的向量$\overrightarrow{b}$,记|$\overrightarrow{b}$-t$\overrightarrow{a}$|(t∈R)的最小值dmin,则当$\overrightarrow{b}$变化时,dmin的最大值为(  )
A.$\frac{4}{3}$B.2C.4D.6

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知O是△ABC的外心,∠C=45°,若$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$(m,n∈R),则m+n的取值范围是(  )
A.[$-\sqrt{2}$,$\sqrt{2}$]B.[$-\sqrt{2}$,1)C.[$-\sqrt{2}$,-1)D.(1,$\sqrt{2}$]

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知等差数列{an},等比数列{bn}的公比为q(n,q∈N*),设{an},{bn}的前n项和分别为Sn,Tn.若T2n+1=S${\;}_{{q}^{n}}$,则an=2n-1.

查看答案和解析>>

科目: 来源: 题型:填空题

12.某射手射击1次,命中目标的概率为0.9,他连续射击4次,且各次射击是否命中目标相互之间没有影响,有下列结论:
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率为0.93×0.1;
③他至少击中目标1次的概率是1-(0.1)4
④他最后一次才击中目标的概率是$C_4^1×0.9×{0.1^3}$
其中正确结论的序号是①③  (写出所有正确结论的序号)

查看答案和解析>>

科目: 来源: 题型:选择题

11.若${z_1},{z_2}∈C,{z_1}•\overline{z_2}+\overline{z_1}•{z_2}$是(  )
A.纯虚数B.实数C.虚数D.以上都有可能

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{2(x-1),x≤1}\\{{x}^{2}-4x+3,x>1}\end{array}\right.$,则函数y=f(x)-2lnx的零点个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:解答题

9.己知函数f(x)=lnx+x2-3x+2.
(1)求f(x)的单调区间;
(2)证明:对任意n∈N*,都有ln(1+n)>$\sum_{i=1}^{n}\frac{1-1}{{i}^{2}}$成立.

查看答案和解析>>

科目: 来源: 题型:填空题

8.设P(x,y),其中x,y∈N,则满足x+y≤4的点P的个数为15.一般地,满足x+y≤n(n∈N)的点P的个数应为$\frac{(n+1)(n+2)}{2}$个.

查看答案和解析>>

科目: 来源: 题型:选择题

7.$f(x)=\frac{1}{4}{x^2}+cosx$,f'(x)为f(x)的导函数,则f'(x)的是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

6.设函数f(x)=$\frac{2}{x}$-2+2alnx.
(1)讨论函数f(x)的单调性;
(2)若f(x)在区间[$\frac{1}{2}$,2]上的最小值为0,求实数a的值.

查看答案和解析>>

同步练习册答案