相关习题
 0  239016  239024  239030  239034  239040  239042  239046  239052  239054  239060  239066  239070  239072  239076  239082  239084  239090  239094  239096  239100  239102  239106  239108  239110  239111  239112  239114  239115  239116  239118  239120  239124  239126  239130  239132  239136  239142  239144  239150  239154  239156  239160  239166  239172  239174  239180  239184  239186  239192  239196  239202  239210  266669 

科目: 来源: 题型:选择题

5.已知f(x)=x2•ex,若函数g(x)=f2(x)-kf(x)+1恰有三个零点,则下列结论正确的是(  )
A.k=±2B.k=$\frac{8}{{e}^{2}}$C.k=2D.k=$\frac{4}{{e}^{2}}$+$\frac{{e}^{2}}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知实数x,y满足条件$\left\{\begin{array}{l}{3x+y-7≥0}\\{x+3y-13≤0}\\{x-y-1≤0}\end{array}\right.$,则z=|2x+y|的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目: 来源: 题型:选择题

3.执行如图的程序框图,则输出的S=(  )
A.2B.-3C.-$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知A={1,2,4},B={y|y=log2x,x∈A},则A∪B=(  )
A.{1,2}B.[1,2]C.{0,1,2,4}D.[0,4]

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知$\frac{z}{(1+i)^{2}}$=1-i(i为虚数单位),则复数z在复平面内对应的点的坐标是(  )
A.(2,-2)B.(2,2)C.(-2,-2)D.(-2,2)

查看答案和解析>>

科目: 来源: 题型:解答题

20.某商城举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖规则如下:
1.抽奖方案有以下两种,方案a:从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中,方案b:从装有3个红球、2个白球(仅颜色相同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.
2.抽奖条件是,顾客购买商品的金额买100元,可根据方案a抽奖一次:满150元,可根据方案b抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a抽奖两次或方案b抽奖一次或方案a、b各抽奖一次).已知顾客A在该商场购买商品的金额为350元.
(1)若顾客A只选择方案a进行抽奖,求其所获奖金的期望值;
(2)要使所获奖金的期望值最大,顾客A应如何抽奖.

查看答案和解析>>

科目: 来源: 题型:选择题

19.执行如图的程序框图,则输出的S=(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.-$\frac{\sqrt{3}}{2}$D.0

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形,若在大正方形内随机取一点,该点落在小正方形的概率为$\frac{1}{5}$,则图中直角三角形中较大锐角的正弦值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,圆锥的横截面为等边三角形SAB,O为底面圆圆心,Q为底面圆周上一点.
(Ⅰ)如果BQ的中点为C,OH⊥SC,求证:OH⊥平面SBQ;
(Ⅱ)如果∠AOQ=60°,QB=2$\sqrt{3}$,求该圆锥的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=ln(x+m)-x(m为常数),在x=0处取值极值,设g(x)=f(x)-x2
(Ⅰ)求m的值及g(x)的单调区间;
(Ⅱ)n∈N*,n≥2时,证明:ln$\frac{n+1}{2}$<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n-1}$.

查看答案和解析>>

同步练习册答案