相关习题
 0  239032  239040  239046  239050  239056  239058  239062  239068  239070  239076  239082  239086  239088  239092  239098  239100  239106  239110  239112  239116  239118  239122  239124  239126  239127  239128  239130  239131  239132  239134  239136  239140  239142  239146  239148  239152  239158  239160  239166  239170  239172  239176  239182  239188  239190  239196  239200  239202  239208  239212  239218  239226  266669 

科目: 来源: 题型:填空题

7.三棱锥P-ABC满足:AB⊥AC,AB⊥AP,AB=2,AP+AC=4,则该三棱锥的体积V的取值范围是(0,$\frac{4}{3}$]

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=$\frac{lnx}{x}$,g(x)=-x2+ax+1.
(1)求函数y=f(x)在[t,t+2](t>0)上的最大值;
(2)若函数y=x2f(x)+g(x)有两个不同的极值点x1,x2(x1<x2),且x2-x1>$\frac{1}{2}$ln2,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知在四棱锥P-ABCD中,底面ABCD是平行四边形,且有PB=PD,PA⊥BD.
(1)求证:平面PAC⊥平面ABCD;
(2)若∠DAB=∠PDB=60°,AD=2,PA=3,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=$\frac{a{x}^{2}}{{e}^{x}}$,直线y=$\frac{1}{e}$x为曲线y=f(x)的切线.
(1)求实数a的值;
(2)用min{m,n}表示m,n中的较小值,设函数g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函数h(x)=g(x)-cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,在正三棱柱ABC-A1B1C1中,A1B1=2,AA1=h,E为BB1的中点.
(1)若h=2,请画出该正三棱柱的正(主)视图与左(侧)视图.
(2)求证:平面A1EC⊥平面AA1C1C;
(3)当平面A1EC与平面A1B1C1所成的锐二面角为45°时,求该正三棱柱外接球的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C的方程为(x-2)2+y2=4,直线l的方程为x+$\sqrt{3}$y-12=0,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)分别写出曲线C与直线l的极坐标方程;
(Ⅱ)在极坐标中,极角为θ(θ∈(0,$\frac{π}{2}$))的射线m与曲线C,直线l分别交于A、B两点(A异于极点O),求$\frac{|OA|}{|OB|}$的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知函数f(x)=cos$\frac{1}{2}$x的图象向右平移π个单位得到函数y=g(x)的图象,则g($\frac{π}{3}$)=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知椭圆E的中心在坐标原点O,焦点在x轴上,椭圆E的短轴端点和焦点所组成的四边形为正方形,且椭圆E上任意一点到两个焦点的距离之和为2$\sqrt{2}$.
(1)求椭圆E的标准方程;
(2)若直线l:y=2x+m与椭圆E相交于M,N两点,求△MON面积的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知函数f(x)=x3+bx2+cx+3,其中b,c∈R,若曲线y=f(x)在点(1,f(1))处的切线方程为3x+y=0,则f(2)=-1.

查看答案和解析>>

科目: 来源: 题型:填空题

18.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{x-y+3≥0}\\{0≤x≤3}\end{array}\right.$则z=3x-y的最小值为-3.

查看答案和解析>>

同步练习册答案