相关习题
 0  239033  239041  239047  239051  239057  239059  239063  239069  239071  239077  239083  239087  239089  239093  239099  239101  239107  239111  239113  239117  239119  239123  239125  239127  239128  239129  239131  239132  239133  239135  239137  239141  239143  239147  239149  239153  239159  239161  239167  239171  239173  239177  239183  239189  239191  239197  239201  239203  239209  239213  239219  239227  266669 

科目: 来源: 题型:解答题

17.设f(x)=|x-b|+|x+b|.
(1)当b=1时,求f(x)≤x+2的解集;
(2)当x=1时,若不等式f(x)≥$\frac{|a+1|-|2a-1|}{|a|}$对任意实数a≠0恒成立,求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}\right.$的图象上存在不同的两点A,B,使得曲线y=f(x)在这两点处的切线重合,则实数a的取值范围是(-2,$\frac{1}{4}$).

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知实数x,y满足$\left\{\begin{array}{l}\frac{1}{2}x-y≤0\\ x-7≤0\\ 2x-y-4≥0\end{array}\right.$,则z=2x-3y的最小值为-16.

查看答案和解析>>

科目: 来源: 题型:填空题

14.函数$f(x)=2x+\sqrt{x-1}$的值域是[2,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知函数f(x)=x2-x-2,x∈[-3,3],在定义域内任取一点x0,使f(x0)≤0的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

12.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:
古文迷非古文迷合计
男生262450
女生302050
合计5644100
(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8415.0246.635

查看答案和解析>>

科目: 来源: 题型:解答题

11.对于数列{an},定义Tn=a1a2+a2a3+…+anan+1,n∈N*
(1)若an=n,是否存在k∈N*,使得Tk=2017?请说明理由;
(2)若a1=3,${T_n}={6^n}-1$,求数列{an}的通项公式;
(3)令${b_n}=\left\{\begin{array}{l}{T_2}-2{T_1},\begin{array}{l}{\;}{\;}{n=1}\end{array}\\{T_{n+1}}+{T_{n-1}}-2{T_n}\begin{array}{l}{\;},{n≥2,n∈{N^*}}\end{array}\end{array}\right.$,求证:“{an}为等差数列”的充要条件是“{an}的前4项为等差数列,且{bn}为等差数列”.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如果函数y=f(x)的定义域为R,且存在实常数a,使得对于定义域内任意x,都有f(x+a)=f(-x)成立,则称此函数f(x)具有“P(a)性质”.
(1)判断函数y=cosx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值的集合;若不具有“P(a)性质”,请说明理由;
(2)已知函数y=f(x)具有“P(0)性质”,且当x≤0时,f(x)=(x+m)2,求函数y=f(x)在区间[0,1]上的值域;
(3)已知函数y=g(x)既具有“P(0)性质”,又具有“P(2)性质”,且当-1≤x≤1时,g(x)=|x|,若函数y=g(x)的图象与直线y=px有2017个公共点,求实数p的值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)过点$({1\;,\;\frac{3}{2}})$,两个焦点为F1(-1,0)和F2(1,0).圆O的方程为x2+y2=a2
(1)求椭圆C的标准方程;
(2)过F1且斜率为k(k>0)的动直线l与椭圆C交于A、B两点,与圆O交于P、Q两点(点A、P在x轴上方),当|AF2|,|BF2|,|AB|成等差数列时,求弦PQ的长.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,在长方体ABCD-A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截长方体得到一个矩形EFGH,且A1E=D1F=2,AH=DG=5.
(1)求截面EFGH把该长方体分成的两部分体积之比;
(2)求直线AF与平面α所成角的正弦值.

查看答案和解析>>

同步练习册答案