相关习题
 0  239036  239044  239050  239054  239060  239062  239066  239072  239074  239080  239086  239090  239092  239096  239102  239104  239110  239114  239116  239120  239122  239126  239128  239130  239131  239132  239134  239135  239136  239138  239140  239144  239146  239150  239152  239156  239162  239164  239170  239174  239176  239180  239186  239192  239194  239200  239204  239206  239212  239216  239222  239230  266669 

科目: 来源: 题型:解答题

7.已知函数f(x)=lnx-2ax(其中a∈R).
(1)当a=2时,求函数f(x)的图象在x=1处的切线方程;
(2)若f(x)≤2恒成立,求a的取值范围;
(3)设g(x)=f(x)+$\frac{1}{2}$x2,且函数g(x)有极大值点x0.求证:x0f(x0)+1+ax${\;}_{0}^{2}$>0.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知随机变量X+Y=10,若X~B(10,0.6),则E(Y),D(Y)分别是(  )
A.6和2.4B.4和5.6C.4和2.4D.6和5.6

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=2$\sqrt{3}sin(wx+\frac{π}{6})coswx$(0<w<2),且f(x)的图象过点$(\frac{5π}{12},\frac{{\sqrt{3}}}{2})$.
(1)求w的值及函数f(x)的最小正周期;
(2)将y=f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,已知$g(\frac{α}{2})=\frac{{5\sqrt{3}}}{6}$,求$cos(2α-\frac{π}{3})$的值.

查看答案和解析>>

科目: 来源: 题型:选择题

4.某化肥厂用三种原料生产甲乙两种肥料,生产1吨甲种肥料和生产1吨乙种肥料所需三种原料的吨数如右表所示:已知生产1吨甲种肥料产生的利润2万元,生产1吨乙种肥料产生的利润为3万元,现有A种原料20吨,B种原料36吨,C种原料32吨,在此基础上安排生产,则生产甲乙两种肥料的利润之和的最大值为(  )
ABC
242
448
A.17万元B.18万元C.19万元D.20万元

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知圆${C_1}:{(x+6)^2}+{(y-5)^2}=4$,圆${C_2}:{(x-2)^2}+{(y-1)^2}=1,M,N$分别为圆C1和C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为(  )
A.7B.8C.10D.13

查看答案和解析>>

科目: 来源: 题型:解答题

2.城市发展面临生活垃圾产生量逐年剧增的困扰,为了建设宜居城市,2017年1月,某市制定《生活垃圾分类和减量工作方案》,到2020年,生活垃圾无害化处理率达到100%.如图是该市2011~2016年生活垃圾年产生量(单位:万吨)的柱状图;如表是2016年年初与年末对该市四个社区各随机抽取1000人调查参与垃圾分类人数的统计表:

2016年初2016年末
社区A539568
社区B543585
社区C568600
社区D496513
注1:年份代码1~6分别对应年份2011~2016
注2:参与度=$\frac{参加垃圾分类人数}{调查人数}$×100%
参与度的年增加值=年末参与度-年初参与度
(1)由图可看出,该市年垃圾生产量y与年份代码t之间具有较强的线性相关关系,运用最小二乘法可得回归直线方程为$\widehat{y}$=14.8t+$\widehat{a}$,预测2020年该年生活垃圾的产生量;
(2)已知2016年该市生活在垃圾无害化化年处理量为120万吨,且全市参与度每提高一个百分点,都可使该市的生活垃圾无害化处理量增加6万吨,用样本估计总体的思想解决以下问题:
①由表的数据估计2016年该市参与度的年增加值,假设2017年该市参与度的年增加值与2016年大致相同,预测2017年全市生活垃圾无害化处理量;
②在2017年的基础上,若2018年至2020年的参与度逐年增加5个百分点,则到2020年该市能否实现生活垃圾无害化处理率达到100%的目标?

查看答案和解析>>

科目: 来源: 题型:填空题

1.设函数f(x)=(x-a)(x-b)(x-c)(其中a>1,b>1),x=0是f(x)的一个零点,曲线y=f(x)在点(1,f(1))处的切线平行于x轴,则a+b的最小值为6.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知(1+i)(1+ai)=2,则实数a的值为-1.

查看答案和解析>>

科目: 来源: 题型:选择题

19.数列{an}满足an+1-an=an-an-1(n≥2,n∈N),a3=11,Sn为其前n项和,则S5=(  )
A.45B.50C.55D.60

查看答案和解析>>

科目: 来源: 题型:选择题

18.某学校食堂推出两款优惠套餐,甲、乙、丙三位同学选择同一款餐的概率为(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案