相关习题
 0  239069  239077  239083  239087  239093  239095  239099  239105  239107  239113  239119  239123  239125  239129  239135  239137  239143  239147  239149  239153  239155  239159  239161  239163  239164  239165  239167  239168  239169  239171  239173  239177  239179  239183  239185  239189  239195  239197  239203  239207  239209  239213  239219  239225  239227  239233  239237  239239  239245  239249  239255  239263  266669 

科目: 来源: 题型:解答题

1.已知函数f(x)=cosx($\sqrt{3}$sinx-cosx)+m(m∈R),将y=f(x)的图象向左平移$\frac{π}{6}$个单位后得到g(x)的图象,且y=g(x)在区间[$\frac{π}{4}$,$\frac{π}{3}$]内的最小值为$\frac{\sqrt{3}}{2}$.
(1)求m的值;
(2)在锐角△ABC中,若g($\frac{C}{2}$)=-$\frac{1}{2}$+$\sqrt{3}$,求sinA+cosB的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知函数f(x)=$\frac{2}{x+2}$,点O为坐标原点,点An(n,f(n))(n∈N*),向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$与$\overrightarrow{i}$的夹角,则使得$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{n}}{sin{θ}_{n}}$<t恒成立的实数t的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知直三棱柱ABC-A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,则该三棱柱内切球的表面积与外接球的表面积的和为33π.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=axlnx+bx(a≠0)在(1,f(1))处的切线与x轴平行,
(1)试讨论f(x)在(0,+∞)上的单调性;
(2)若存在a∈(e,+∞),对任意的${x_1},{x_2}∈[\frac{1}{3}e,3e]$都有|f(x1)-f(x2)|<(m+eln3)a+3e成立,求实数m的取值范围.(e=2.71828…)

查看答案和解析>>

科目: 来源: 题型:解答题

17.在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥BD,PA=AC=2AD=4,AB=BC=2$\sqrt{5}$,M,N分别为PD,PB,CD的中点.
(1)求证:平面MBE⊥平面PAC;
(2)求三棱锥B-AME的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

16.等差数列{an}中,a1=2,公差为d≠0,Sn其前n项的和,且S2n=4Sn(n∈N+)恒成立.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{4}{{\sqrt{a_n}+\sqrt{{a_{n+1}}}}}$(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

15.在直角△ABC中,斜边BC=6,以BC中点O为圆心,作半径为2的圆,分别交BC于两点,若|AP|=m,|AQ|=n,则m2+n2=26.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知函数f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2017x+log2017x,则f(x)在R上的零点的个数为3.

查看答案和解析>>

科目: 来源: 题型:填空题

13.向量$\overrightarrow a=(2,1),\overrightarrow b=(-1,2)$,则$(\overrightarrow a+\overrightarrow b)(\overrightarrow a-\overrightarrow b)$=0.

查看答案和解析>>

科目: 来源: 题型:选择题

12.若实数x,y满足不等式组$\left\{\begin{array}{l}x+2y-5≥0\\ x-y+1≥0\\ x+y-5≤0\end{array}\right.$,则z=(x-1)2+(y+1)2的最小值为(  )
A.$\frac{53}{4}$B.10C.$\frac{36}{5}$D.17

查看答案和解析>>

同步练习册答案