相关习题
 0  239089  239097  239103  239107  239113  239115  239119  239125  239127  239133  239139  239143  239145  239149  239155  239157  239163  239167  239169  239173  239175  239179  239181  239183  239184  239185  239187  239188  239189  239191  239193  239197  239199  239203  239205  239209  239215  239217  239223  239227  239229  239233  239239  239245  239247  239253  239257  239259  239265  239269  239275  239283  266669 

科目: 来源: 题型:填空题

15.已知数列{an}满足a1=1,an+1=$\frac{a_n}{{2{a_n}+1}}$(n∈N*),bn=$\frac{a_n}{2n+1}$,则数列{bn}的前n项和Sn=$\frac{n}{2n+1}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,△PAD为正三角形,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F,平面PCD与平面PAB交于直线l.
(1)求证:l∥EF;
(2)求三棱锥P-AEF的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

13.2016年9月30日周杰伦“地表最强”世界巡回演唱会在山西省体育中心红灯笼体育场举行.某高校4000名女生,6000名男生中按分层抽样抽取了50名学生进行了问卷调查,调查发现观看演唱会与未观看演唱会的人数相同,其中观看演唱会的女生为15人.
(1)根据调查结果完成如下2×2列联表,并通过计算判断是否在犯错误的概率不超过0.005的前提下认为“观看演唱会与性别有关”?
(2)从观看演唱会的4名男生和3名女生中抽取两人,求恰好抽到一名男生和一名女生的概率.
  观看 未观看 合计
 女生   
 男生   
 合计   50
P(K2≥k00.0250.0100.005 0.001
k05.0246.6357.879 10.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知等差数列{an}的前n项和为Sn,且a3=7,S4=24,数列{bn}的前n项和Tn=n2+an
(1)求数列{an},{bn}的通项公式;
(2)求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和Bn

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知数列{an}满足lna1+$\frac{{ln{a_2}}}{2}+\frac{{ln{a_3}}}{3}+…+\frac{{ln{a_n}}}{n}$=2n,则数列{an}的前项的乘积为en(n+1)

查看答案和解析>>

科目: 来源: 题型:解答题

10.近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从70后和80后的员工中随机调查了100位,得到数据如表:
愿意被外派不愿意被外派合计
70后202040
80后402060
合计6040100
(Ⅰ)根据调查的数据,是否有90%以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加.70后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.
参考数据:
P(K2>k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}sinxcosx+{sin^2}$x.
(Ⅰ)求函数f(x)的递增区间;
(Ⅱ)△ABC的角A,B,C所对边分别是a,b,c,角A的平分线交BC于D,f(A)=$\frac{3}{2}$,AD=$\sqrt{2}$BD=2,求cosC.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知集合A={x∈N|3-2x>0},B={x|x2≤4},则A∩B=(  )
A.{x|-2≤x<1}B.{x|x≤2}C.{0,1}D.{1,2}

查看答案和解析>>

科目: 来源: 题型:选择题

7.函数f(x)=$\frac{ln|x|}{x}$的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图(1)在平面六边形ABCDEF,四边形ABCD是矩形,且AB=4,BC=2,AE=DE=$\sqrt{2}$,BF=CF=$\sqrt{5}$,点M,N分别是AD,BC的中点,分别沿直线AD,BC将△DEF,△BCF翻折成如图(2)的空间几何体ABCDEF.
(1)利用下面的结论1或结论2,证明:E、F、M、N四点共面;
结论1:过空间一点作已知直线的垂面,有且只有一个;
结论2:过平面内一条直线作该平面的垂面,有且只有一个.
(2)若二面角E-AD-B和二面角F-BC-A都是60°,求二面角A-BE-F的余弦值.

查看答案和解析>>

同步练习册答案