相关习题
 0  239116  239124  239130  239134  239140  239142  239146  239152  239154  239160  239166  239170  239172  239176  239182  239184  239190  239194  239196  239200  239202  239206  239208  239210  239211  239212  239214  239215  239216  239218  239220  239224  239226  239230  239232  239236  239242  239244  239250  239254  239256  239260  239266  239272  239274  239280  239284  239286  239292  239296  239302  239310  266669 

科目: 来源: 题型:解答题

4.设Sn,Tn分别是数列{an}和{bn}的前n项和,已知对于任意n∈N*,都有3an=2Sn+3,数列{bn}是等差数列,且T5=25,b10=19.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=$\frac{{{a}_{n}b}_{n}}{n(n+1)}$,求数列{cn}的前n项和Rn

查看答案和解析>>

科目: 来源: 题型:选择题

3.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{3+\sqrt{3}+2\sqrt{2}}{2}$B.$\frac{1+\sqrt{3}+\sqrt{2}}{2}$C.$\frac{1+\sqrt{3}+2\sqrt{2}}{2}$D.$\frac{3}{2}$+2$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.定义在(0,+∞)上的函数f(x)的导函数f′(x)满足$\sqrt{x}{f^'}(x)<\frac{1}{2}$,则下列不等式中,一定成立的是(  )
A.f(9)-1<f(4)<f(1)+1B.f(1)+1<f(4)<f(9)-1C.f(5)+2<f(4)<f(1)-1D.f(1)-1<f(4)<f(5)+2

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知矩阵$M=[{\begin{array}{l}1&a\\ 3&b\end{array}}]$的一个特征值λ1=-1,及对应的特征向量$\overrightarrow e=[{\begin{array}{l}1\\{-1}\end{array}}]$,求矩阵M的逆矩阵.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知函数f(x)=2a2lnx-x2,g(x)=-x2+2a3x+$\frac{{2{a^2}}}{x},({a>0})$.
(1)讨论函数f(x)在(1,e2)上零点的个数;
(2)若h(x)=f(x)-g(x)有两个不同的零点x1,x2,求证:x1•x2>2e2.(参考数据:e取2.8,ln2取0.7,$\sqrt{2}$取1.4)

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点在直线l:$\sqrt{3}$x-y-3=0上,且椭圆上任意两个关于原点对称的点与椭圆上任意一点的连线的斜率之积为-$\frac{1}{4}$.
(1)求椭圆C的方程;
(2)若直线t经过点P(1,0),且与椭圆C有两个交点A,B,是否存在直线l0:x=x0(其中x0>2)使得A,B到l0的距离dA,dB满足$\frac{d_A}{d_B}=\frac{{|{PA}|}}{{|{PB}|}}$恒成立?若存在,求出x0的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

18.如图,在四棱锥P-ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F,平面PCD与平面PAB交于直线l.
(1)求证:l∥EF;
(2)求PB与平面ABCD所成角的正弦值为$\frac{2\sqrt{21}}{21}$,求二面角P-AE-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t为参数),其中0≤α<π.在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1:ρ=4cosθ.直线l与曲线C1相切.
(1)将曲线C1的极坐标方程化为直角坐标方程,并求α的值.
(2)已知点Q(2,0),直线l与曲线C2:x2+$\frac{{y}^{2}}{3}$=1交于A,B两点,求△ABQ的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F(-1,0),且经过点(1,$\frac{3}{2}$).
(1)求椭圆的标准方程;
(2)已知椭圆的弦AB过点F,且与x轴不垂直.若D为x轴上的一点,DA=DB,求$\frac{AB}{DF}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:
(1)MN∥平面PAB
(2)AM⊥平面PCD.

查看答案和解析>>

同步练习册答案