相关习题
 0  239123  239131  239137  239141  239147  239149  239153  239159  239161  239167  239173  239177  239179  239183  239189  239191  239197  239201  239203  239207  239209  239213  239215  239217  239218  239219  239221  239222  239223  239225  239227  239231  239233  239237  239239  239243  239249  239251  239257  239261  239263  239267  239273  239279  239281  239287  239291  239293  239299  239303  239309  239317  266669 

科目: 来源: 题型:选择题

14.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”下图是根据刘徽的“割圆术”思想设计的一个程序框图.若运行该程序,则输出的n的值为:(参考数据:$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)(  )
A.48B.36C.30D.24

查看答案和解析>>

科目: 来源: 题型:选择题

13.下面四个残差图中可以反映出回归模型拟合精度较好的为(  )
A.图1B.图2C.图3D.图4

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知函数f(x)=$\frac{ax}{{x}^{2}+3}$,若f′(1)=$\frac{1}{2}$,则实数a的值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=asinx+ln(1-x).
(1)若a=1,求f(x)在x=0处的切线方程;
(2)若f(x)在区间[0,1)上单调递减,求a的取值范围;
(3)求证:e${\;}^{sin\frac{1}{(1+1)^{2}}+sin\frac{1}{(2+1)^{2}}+…+sin\frac{1}{(n+1)^{2}}}$<2,(n∈N*).

查看答案和解析>>

科目: 来源: 题型:解答题

10.某市高二年级学生进行数学竞赛,竞赛分为初赛和决赛,规定成绩在110分及110分以上的学生进入决赛,110分以下的学生则被淘汰,现随机抽取500名学生的初赛成绩按[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]做成频率副本直方图,如图所示:(假设成绩在频率分布直方图中各段是均匀分布的)
(1)求这500名学生中进入决赛的人数,及进入决赛学生的平均分(结果保留一位小数);
(2)在全市进入决赛的学生中,按照成绩[110,130),[130,150]分层抽取6人组进行决赛前培训,在从6人中选取2人担任组长,求组长中至少一名同学来自于高分组[130,150]的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

9.在平面直角坐标系xoy中,曲线C的参数方程为$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$(t为参数),以O为极点x轴的正半轴为极轴建极坐标系,直线l的极坐标方程为ρ(cosθ-sinθ)=4,且与曲线C相交于A,B两点.
(Ⅰ)在直角坐标系下求曲线C与直线l的普通方程;
(Ⅱ)求△AOB的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

8.某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100)的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100)的数据)

(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保宣传的志愿者活动,求所抽取的2名同学来自不同组的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设Sn是等差数列{an}的前n项和,若公差d≠0,a5=10,且成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{({a_n}-1)({a_n}+1)}}$,Tn=b1+b2+…+bn,求证:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=m-|x-1|,(m>0),且f(x+1)≥0的解集为[-3,3].
(Ⅰ)求m的值;
(Ⅱ)若正实数a,b,c满足$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=m$,求证:a+2b+3c≥3.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=(x2-2x)1nx+ax2+2,g(x)=f(x)-x-2.
(Ⅰ)当a=-1时,求f(x)在(1,f(1))处的切线方程;
(Ⅱ)若a>0且函数g(x)有且仅有一个零点,求实数a的值;
(Ⅲ)在(Ⅱ)的条件下,若e-2<x<e时,g(x)≤m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案