相关习题
 0  239124  239132  239138  239142  239148  239150  239154  239160  239162  239168  239174  239178  239180  239184  239190  239192  239198  239202  239204  239208  239210  239214  239216  239218  239219  239220  239222  239223  239224  239226  239228  239232  239234  239238  239240  239244  239250  239252  239258  239262  239264  239268  239274  239280  239282  239288  239292  239294  239300  239304  239310  239318  266669 

科目: 来源: 题型:解答题

4.已知函数f(x)=mex+x+1.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)有两个零点x1,x2(x1<x2),证明:x1+x2>0.

查看答案和解析>>

科目: 来源: 题型:解答题

3.为丰富人民群众业余生活,某市拟建设一座江滨公园,通过专家评审筛选出建设方案A和B向社会公开征集意见.有关部门用简单随机抽样方法调查了500名市民对这两种方案的看法,结果用条形图表示如下:
(Ⅰ)根据已知条件完成下面的2×2列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.01的前提下认为是否选择方案A和年龄段有关?
选择方案A选择方案B总计
老年人
非老年人
总计500
附:
(Ⅱ)根据(Ⅰ)的结论,能否提出一个更好的调查方法,使得调查结果更具代表性,说明理由.
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,菱形ABCD与等边△PAD所在的平面相互垂直,AD=2,∠DAB=60°.
(Ⅰ)证明:AD⊥PB;
(Ⅱ)求三棱锥C-PAB的高.

查看答案和解析>>

科目: 来源: 题型:填空题

1.数列{an}满足a1=1,(a1+a2)+(a2+a3)+(a3+a4)+…+(an+an+1)=2n+1-2,则a8=85.

查看答案和解析>>

科目: 来源: 题型:选择题

20.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法至今仍是比较先进的算法.如图的程序框图是针对某一多项式求值的算法,如果输入的x的值为2,则输出的v的值为(  )
A.129B.144C.258D.289

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,AA1⊥底面ABCD,E为B1D的中点.
(Ⅰ)证明:平面ACE⊥平面ABCD;
(Ⅱ)若二面角D-AE-C为60°,AA1=AB=1,求三棱锥C-AED的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

18.某市对大学生毕业后自主创业人员给予小额贷款补贴,贷款期限分为6个月、12个月、18个月、24个月、36个月五种,对于这五种期限的贷款政府分别补贴200元、300元、300元、400元、400元,从2016年享受此项政策的自主创业人员中抽取了100人进行调查统计,选取贷款期限的频数如表:
 贷款期限  6个月  12个月  18个月  24个月  36个月
 频数 20 40 20 10 10
以上表中各种贷款期限的频数作为2017年自主创业人员选择各种贷款期限的概率.
(Ⅰ)某大学2017年毕业生中共有3人准备申报此项贷款,计算其中恰有两人选择贷款期限为12个月的概率;
(Ⅱ)设给某享受此项政策的自主创业人员补贴为X元,写出X的分布列;该市政府要做预算,若预计2017年全市有600人申报此项贷款,则估计2017年该市共要补贴多少万元.

查看答案和解析>>

科目: 来源: 题型:填空题

17.若非零向量$\overrightarrow a,\overrightarrow b$满足|$\overrightarrow a$|=2|$\overrightarrow b$|=|$\overrightarrow a$+$\overrightarrow b$|,则向量$\overrightarrow a$与$\overrightarrow b$夹角的余弦值为-$\frac{1}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知实数x,y满足条件$\left\{\begin{array}{l}x≥y\\ 2x+y-2≥0\\ x≤1\end{array}\right.$,则z=y-2x的最小值为-2.

查看答案和解析>>

科目: 来源: 题型:选择题

15.球面上有A,B,C三点,球心O到平面ABC的距离是球半径的$\frac{1}{3}$,且AB=2$\sqrt{2}$,AC⊥BC,则球O的表面积是(  )
A.81πB.C.$\frac{81π}{4}$D.$\frac{9π}{4}$

查看答案和解析>>

同步练习册答案