相关习题
 0  239132  239140  239146  239150  239156  239158  239162  239168  239170  239176  239182  239186  239188  239192  239198  239200  239206  239210  239212  239216  239218  239222  239224  239226  239227  239228  239230  239231  239232  239234  239236  239240  239242  239246  239248  239252  239258  239260  239266  239270  239272  239276  239282  239288  239290  239296  239300  239302  239308  239312  239318  239326  266669 

科目: 来源: 题型:解答题

4.在极坐标系中,已知点A(2,$\frac{π}{2}$),B(1,-$\frac{π}{3}$),圆O的极坐标方程为ρ=4sinθ.
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)求圆O的直角坐标方程.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在△ABC中,已知三内角A,B,C成等差数列,且sin($\frac{π}{2}$+A)=$\frac{11}{14}$.
(Ⅰ)求tanA及角B的值;
(Ⅱ)设角A,B,C所对的边分别为a,b,c,且a=5,求b,c的值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知a,b,c,d∈R且满足$\frac{a+3lna}{b}$=$\frac{d-3}{2c}$=1,则(a-c)2+(b-d)2的最小值为$\frac{9}{5}$ln2$\frac{{e}^{2}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l的参数方程是$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=3+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),曲线C的极坐标方程是ρcos2θ=4sinθ.
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,点M为AB的中点,点P的极坐标为$(4\sqrt{3},\frac{π}{3})$,求|PM|的值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知二阶矩阵M有特征值λ=8及对应的一个特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,并且矩阵M将点(-1,3)变换为(4,16),求矩阵M.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,?n∈N*满足$\frac{{{S_{n+1}}}}{n+1}-\frac{S_n}{n}=\frac{1}{2}$,且a1=1,正项数列{bn}满足bn+12-bn+1=bn2+bn(n∈N*),其前7项和为42.
(1)求数列{an}和{bn}的通项公式;
(2)令cn=$\frac{b_n}{a_n}+\frac{a_n}{b_n}$,数列{cn}的前n项和为Tn,若对任意正整数n,都有Tn≥2n+a,求实数a的取值范围;
(3)将数列{an},{bn}的项按照“当n为奇数时,an放在前面;当n为偶数时,bn放在前面”的要求进行排列,得到一个新的数列:a1,b1,b2,a2,a3,b3,b4,a4,a5,b5,b6,…,求这个新数列的前n项和Pn

查看答案和解析>>

科目: 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,△ABC的面积为S,$asinB=\sqrt{3}bcosA$.
(1)求角A的大小;
(2)若$a=\sqrt{3}$,$S=\frac{{\sqrt{3}}}{2}$,求b+c的值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=lnx-a(a∈R)与函数$F(x)=x+\frac{2}{x}$有公共切线.
(Ⅰ)求a的取值范围;
(Ⅱ)若不等式xf(x)+e>2-a对于x>0的一切值恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=$\sqrt{2}$,点E在AD上,且AE=2ED.
(Ⅰ)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;
(Ⅱ)若△PBC的面积是梯形ABCD面积的$\frac{4}{3}$,求点E到平面PBC的距离.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知实数x,y满足条件$\left\{\begin{array}{l}x-y+3≥0\\ 2x+y-4≥0\\ x≤3\end{array}\right.$则z=x2+(y+1)2的最小值为5.

查看答案和解析>>

同步练习册答案